Cargando…
iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data
BACKGROUND: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web appli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299935/ https://www.ncbi.nlm.nih.gov/pubmed/30567491 http://dx.doi.org/10.1186/s12859-018-2486-6 |
_version_ | 1783381589965668352 |
---|---|
author | Ge, Steven Xijin Son, Eun Wo Yao, Runan |
author_facet | Ge, Steven Xijin Son, Eun Wo Yao, Runan |
author_sort | Ge, Steven Xijin |
collection | PubMed |
description | BACKGROUND: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis. RESULTS: iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we validated known molecular pathways and generated novel, testable hypotheses. CONCLUSIONS: Combining comprehensive analytic functionalities with massive annotation databases, iDEP (http://ge-lab.org/idep/) enables biologists to easily translate transcriptomic and proteomic data into actionable insights. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2486-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6299935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62999352018-12-20 iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data Ge, Steven Xijin Son, Eun Wo Yao, Runan BMC Bioinformatics Methodology Article BACKGROUND: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis. RESULTS: iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we validated known molecular pathways and generated novel, testable hypotheses. CONCLUSIONS: Combining comprehensive analytic functionalities with massive annotation databases, iDEP (http://ge-lab.org/idep/) enables biologists to easily translate transcriptomic and proteomic data into actionable insights. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2486-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-12-19 /pmc/articles/PMC6299935/ /pubmed/30567491 http://dx.doi.org/10.1186/s12859-018-2486-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Ge, Steven Xijin Son, Eun Wo Yao, Runan iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title | iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title_full | iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title_fullStr | iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title_full_unstemmed | iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title_short | iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data |
title_sort | idep: an integrated web application for differential expression and pathway analysis of rna-seq data |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299935/ https://www.ncbi.nlm.nih.gov/pubmed/30567491 http://dx.doi.org/10.1186/s12859-018-2486-6 |
work_keys_str_mv | AT gestevenxijin idepanintegratedwebapplicationfordifferentialexpressionandpathwayanalysisofrnaseqdata AT soneunwo idepanintegratedwebapplicationfordifferentialexpressionandpathwayanalysisofrnaseqdata AT yaorunan idepanintegratedwebapplicationfordifferentialexpressionandpathwayanalysisofrnaseqdata |