Cargando…
Urinary mitochondrial DNA level as a biomarker of tissue injury in non-diabetic chronic kidney diseases
BACKGROUND: Urinary mitochondrial DNA (mtDNA) fragment level has been proposed as a biomarker of chronic kidney disease (CKD). In this study, we determine the relation between urinary mtDNA level and rate of renal function deterioration in non-diabetic CKD. METHODS: We recruited 102 non-diabetic CKD...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299980/ https://www.ncbi.nlm.nih.gov/pubmed/30567508 http://dx.doi.org/10.1186/s12882-018-1178-9 |
Sumario: | BACKGROUND: Urinary mitochondrial DNA (mtDNA) fragment level has been proposed as a biomarker of chronic kidney disease (CKD). In this study, we determine the relation between urinary mtDNA level and rate of renal function deterioration in non-diabetic CKD. METHODS: We recruited 102 non-diabetic CKD patients (43 with kidney biopsy that showed non-specific nephrosclerosis). Urinary mtDNA level was measured and compared to baseline clinical and pathological parameters. The patients were followed 48.3 ± 31.8 months for renal events (need of dialysis or over 30% reduction in estimated glomerular filtration rate [eGFR]). RESULTS: The median urinary mtDNA level was 1519.42 (inter-quartile range 511.81–3073.03) million copy/mmol creatinine. There were significant correlations between urinary mtDNA level and baseline eGFR (r = 0.429, p < 0.001), proteinuria (r = 0.368, p < 0.001), severity of glomerulosclerosis (r = − 0.537, p < 0.001), and tubulointerstitial fibrosis (r = − 0.374, p = 0.014). The overall rate of eGFR decline was − 2.18 ± 5.94 ml/min/1.73m(2) per year. There was no significant correlation between the rate of eGFR decline and urinary mtDNA level. By univariate analysis, urinary mtDNA level predicts dialysis-free survival, but the result became insignificant after adjusting for clinical and histological confounding factors. CONCLUSION: Urinary mtDNA levels have no significant association with the rate of renal function decline in non-diabetic CKD, although the levels correlate with baseline renal function, proteinuria, and the severity of histological damage. Urinary mtDNA level may be a surrogate marker of permanent renal damage in non-diabetic CKD. |
---|