Cargando…

An unexpected INAD PDZ tandem-mediated plcβ binding in Drosophila photo receptors

INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. However, the molecular mechanism that governs the interaction between INAD and NORPA (phospholipase Cβ, PLCβ), a key step for the fast ki...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Fei, Huang, Yuxin, Li, Jianchao, Ma, Yuqian, Xie, Chensu, Liu, Zexu, Deng, Xiaoying, Wan, Jun, Xue, Tian, Liu, Wei, Zhang, Mingjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300352/
https://www.ncbi.nlm.nih.gov/pubmed/30526850
http://dx.doi.org/10.7554/eLife.41848
Descripción
Sumario:INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. However, the molecular mechanism that governs the interaction between INAD and NORPA (phospholipase Cβ, PLCβ), a key step for the fast kinetics of the light signaling, is not known. Here, we show that the NORPA C-terminal coiled-coil domain and PDZ-binding motif (CC-PBM) synergistically bind to INAD PDZ45 tandem with an unexpected mode and unprecedented high affinity. Guided by the structure of the INAD–NORPA complex, we discover that INADL is probably a mammalian counterpart of INAD. The INADL PDZ89 tandem specifically binds to PLCβ4 with a mode that is strikingly similar to that of the INAD–NORPA complex, as revealed by the structure of the INADL PDZ89–PLCβ4 CC-PBM complex. Therefore, our study suggests that the highly specific PDZ tandem – PLCβ interactions are an evolutionarily conserved mechanism in PLCβ signaling in the animal kingdom.