Cargando…

Resonant terahertz detection using graphene plasmons

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices o...

Descripción completa

Detalles Bibliográficos
Autores principales: Bandurin, Denis A., Svintsov, Dmitry, Gayduchenko, Igor, Xu, Shuigang G., Principi, Alessandro, Moskotin, Maxim, Tretyakov, Ivan, Yagodkin, Denis, Zhukov, Sergey, Taniguchi, Takashi, Watanabe, Kenji, Grigorieva, Irina V., Polini, Marco, Goltsman, Gregory N., Geim, Andre K., Fedorov, Georgy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300605/
https://www.ncbi.nlm.nih.gov/pubmed/30568184
http://dx.doi.org/10.1038/s41467-018-07848-w
_version_ 1783381709780156416
author Bandurin, Denis A.
Svintsov, Dmitry
Gayduchenko, Igor
Xu, Shuigang G.
Principi, Alessandro
Moskotin, Maxim
Tretyakov, Ivan
Yagodkin, Denis
Zhukov, Sergey
Taniguchi, Takashi
Watanabe, Kenji
Grigorieva, Irina V.
Polini, Marco
Goltsman, Gregory N.
Geim, Andre K.
Fedorov, Georgy
author_facet Bandurin, Denis A.
Svintsov, Dmitry
Gayduchenko, Igor
Xu, Shuigang G.
Principi, Alessandro
Moskotin, Maxim
Tretyakov, Ivan
Yagodkin, Denis
Zhukov, Sergey
Taniguchi, Takashi
Watanabe, Kenji
Grigorieva, Irina V.
Polini, Marco
Goltsman, Gregory N.
Geim, Andre K.
Fedorov, Georgy
author_sort Bandurin, Denis A.
collection PubMed
description Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moiré minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
format Online
Article
Text
id pubmed-6300605
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63006052018-12-21 Resonant terahertz detection using graphene plasmons Bandurin, Denis A. Svintsov, Dmitry Gayduchenko, Igor Xu, Shuigang G. Principi, Alessandro Moskotin, Maxim Tretyakov, Ivan Yagodkin, Denis Zhukov, Sergey Taniguchi, Takashi Watanabe, Kenji Grigorieva, Irina V. Polini, Marco Goltsman, Gregory N. Geim, Andre K. Fedorov, Georgy Nat Commun Article Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moiré minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications. Nature Publishing Group UK 2018-12-19 /pmc/articles/PMC6300605/ /pubmed/30568184 http://dx.doi.org/10.1038/s41467-018-07848-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bandurin, Denis A.
Svintsov, Dmitry
Gayduchenko, Igor
Xu, Shuigang G.
Principi, Alessandro
Moskotin, Maxim
Tretyakov, Ivan
Yagodkin, Denis
Zhukov, Sergey
Taniguchi, Takashi
Watanabe, Kenji
Grigorieva, Irina V.
Polini, Marco
Goltsman, Gregory N.
Geim, Andre K.
Fedorov, Georgy
Resonant terahertz detection using graphene plasmons
title Resonant terahertz detection using graphene plasmons
title_full Resonant terahertz detection using graphene plasmons
title_fullStr Resonant terahertz detection using graphene plasmons
title_full_unstemmed Resonant terahertz detection using graphene plasmons
title_short Resonant terahertz detection using graphene plasmons
title_sort resonant terahertz detection using graphene plasmons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300605/
https://www.ncbi.nlm.nih.gov/pubmed/30568184
http://dx.doi.org/10.1038/s41467-018-07848-w
work_keys_str_mv AT bandurindenisa resonantterahertzdetectionusinggrapheneplasmons
AT svintsovdmitry resonantterahertzdetectionusinggrapheneplasmons
AT gayduchenkoigor resonantterahertzdetectionusinggrapheneplasmons
AT xushuigangg resonantterahertzdetectionusinggrapheneplasmons
AT principialessandro resonantterahertzdetectionusinggrapheneplasmons
AT moskotinmaxim resonantterahertzdetectionusinggrapheneplasmons
AT tretyakovivan resonantterahertzdetectionusinggrapheneplasmons
AT yagodkindenis resonantterahertzdetectionusinggrapheneplasmons
AT zhukovsergey resonantterahertzdetectionusinggrapheneplasmons
AT taniguchitakashi resonantterahertzdetectionusinggrapheneplasmons
AT watanabekenji resonantterahertzdetectionusinggrapheneplasmons
AT grigorievairinav resonantterahertzdetectionusinggrapheneplasmons
AT polinimarco resonantterahertzdetectionusinggrapheneplasmons
AT goltsmangregoryn resonantterahertzdetectionusinggrapheneplasmons
AT geimandrek resonantterahertzdetectionusinggrapheneplasmons
AT fedorovgeorgy resonantterahertzdetectionusinggrapheneplasmons