Cargando…

Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content

BACKGROUND: Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a P...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrano-Bermúdez, Luis Miguel, González Barrios, Andrés Fernando, Montoya, Dolly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301710/
https://www.ncbi.nlm.nih.gov/pubmed/30571717
http://dx.doi.org/10.1371/journal.pone.0209447
_version_ 1783381848463769600
author Serrano-Bermúdez, Luis Miguel
González Barrios, Andrés Fernando
Montoya, Dolly
author_facet Serrano-Bermúdez, Luis Miguel
González Barrios, Andrés Fernando
Montoya, Dolly
author_sort Serrano-Bermúdez, Luis Miguel
collection PubMed
description BACKGROUND: Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a PDO-producing Clostridium strain, which was validated at steady state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for batch and fed-batch cultures, which are the most often employed industrial processes. RESULTS: We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA) approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B. First, we compared the predictions of the dynamic optimization approach (DOA), static optimization approach (SOA), and direct approach (DA). We found no differences between approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for validating dynamic predictions of growth, glycerol consumption, and PDO formation. These results indicated a 4.4% error in PDO prediction and therefore validated the previously proposed objective functions. We performed two global sensitivity analyses, finding that the kinetic input parameters of glycerol uptake flux had the most significant effect on PDO predictions. The other input parameters evaluated during global sensitivity analysis were biomass composition (precursors and macromolecules), death constants, and the kinetic parameters of acetic acid secretion flux. These last input parameters, all obtained from other Clostridium butyricum cultures, were used to develop a population balance model (PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to 66 g/L, almost three times the PDO predicted in the best batch culture. CONCLUSIONS: We developed and validated a dynamic approach to predict PDO production using the iCbu641 GSM model and the previously proposed objective functions. This validated approach was used to propose a population model and then an increment in predictions of PDO production through fed-batch cultures. Therefore, this dynamic model could predict different scenarios, including its integration into downstream processes to predict technical-economic feasibilities and reducing the time and costs associated with experimentation.
format Online
Article
Text
id pubmed-6301710
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63017102019-01-08 Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content Serrano-Bermúdez, Luis Miguel González Barrios, Andrés Fernando Montoya, Dolly PLoS One Research Article BACKGROUND: Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a PDO-producing Clostridium strain, which was validated at steady state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for batch and fed-batch cultures, which are the most often employed industrial processes. RESULTS: We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA) approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B. First, we compared the predictions of the dynamic optimization approach (DOA), static optimization approach (SOA), and direct approach (DA). We found no differences between approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for validating dynamic predictions of growth, glycerol consumption, and PDO formation. These results indicated a 4.4% error in PDO prediction and therefore validated the previously proposed objective functions. We performed two global sensitivity analyses, finding that the kinetic input parameters of glycerol uptake flux had the most significant effect on PDO predictions. The other input parameters evaluated during global sensitivity analysis were biomass composition (precursors and macromolecules), death constants, and the kinetic parameters of acetic acid secretion flux. These last input parameters, all obtained from other Clostridium butyricum cultures, were used to develop a population balance model (PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to 66 g/L, almost three times the PDO predicted in the best batch culture. CONCLUSIONS: We developed and validated a dynamic approach to predict PDO production using the iCbu641 GSM model and the previously proposed objective functions. This validated approach was used to propose a population model and then an increment in predictions of PDO production through fed-batch cultures. Therefore, this dynamic model could predict different scenarios, including its integration into downstream processes to predict technical-economic feasibilities and reducing the time and costs associated with experimentation. Public Library of Science 2018-12-20 /pmc/articles/PMC6301710/ /pubmed/30571717 http://dx.doi.org/10.1371/journal.pone.0209447 Text en © 2018 Serrano-Bermúdez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Serrano-Bermúdez, Luis Miguel
González Barrios, Andrés Fernando
Montoya, Dolly
Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title_full Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title_fullStr Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title_full_unstemmed Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title_short Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
title_sort clostridium butyricum population balance model: predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301710/
https://www.ncbi.nlm.nih.gov/pubmed/30571717
http://dx.doi.org/10.1371/journal.pone.0209447
work_keys_str_mv AT serranobermudezluismiguel clostridiumbutyricumpopulationbalancemodelpredictingdynamicmetabolicfluxdistributionsusinganobjectivefunctionrelatedtoextracellularglycerolcontent
AT gonzalezbarriosandresfernando clostridiumbutyricumpopulationbalancemodelpredictingdynamicmetabolicfluxdistributionsusinganobjectivefunctionrelatedtoextracellularglycerolcontent
AT montoyadolly clostridiumbutyricumpopulationbalancemodelpredictingdynamicmetabolicfluxdistributionsusinganobjectivefunctionrelatedtoextracellularglycerolcontent