Cargando…
An Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: Qualitative Study
BACKGROUND: Although artificial intelligence performs promisingly in medicine, few automatic disease diagnosis platforms can clearly explain why a specific medical decision is made. OBJECTIVE: We aimed to devise and develop an interpretable and expandable diagnosis framework for automatically diagno...
Autores principales: | Zhang, Kai, Liu, Xiyang, Liu, Fan, He, Lin, Zhang, Lei, Yang, Yahan, Li, Wangting, Wang, Shuai, Liu, Lin, Liu, Zhenzhen, Wu, Xiaohang, Lin, Haotian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301833/ https://www.ncbi.nlm.nih.gov/pubmed/30429111 http://dx.doi.org/10.2196/11144 |
Ejemplares similares
-
Automatic identification of myopia based on ocular appearance images using deep learning
por: Yang, Yahan, et al.
Publicado: (2020) -
Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network
por: Jiang, Jiewei, et al.
Publicado: (2017) -
Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images
por: Wang, Liming, et al.
Publicado: (2017) -
Factors influencing subspecialty choice among medical students: a systematic review and meta-analysis
por: Yang, Yahan, et al.
Publicado: (2019) -
Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network
por: Jiang, Jiewei, et al.
Publicado: (2018)