Cargando…
Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, which is clinically associated with a global cognitive decline and progressive loss of memory and reasoning. According to the prevailing amyloid cascade hypothesis of AD, increased soluble amyloid-β (Aβ) oligomer levels impair t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301995/ https://www.ncbi.nlm.nih.gov/pubmed/30618585 http://dx.doi.org/10.3389/fnins.2018.00963 |
_version_ | 1783381894190071808 |
---|---|
author | Marttinen, Mikael Takalo, Mari Natunen, Teemu Wittrahm, Rebekka Gabbouj, Sami Kemppainen, Susanna Leinonen, Ville Tanila, Heikki Haapasalo, Annakaisa Hiltunen, Mikko |
author_facet | Marttinen, Mikael Takalo, Mari Natunen, Teemu Wittrahm, Rebekka Gabbouj, Sami Kemppainen, Susanna Leinonen, Ville Tanila, Heikki Haapasalo, Annakaisa Hiltunen, Mikko |
author_sort | Marttinen, Mikael |
collection | PubMed |
description | Alzheimer’s disease (AD) is the most common neurodegenerative disorder, which is clinically associated with a global cognitive decline and progressive loss of memory and reasoning. According to the prevailing amyloid cascade hypothesis of AD, increased soluble amyloid-β (Aβ) oligomer levels impair the synaptic functions and augment calcium dyshomeostasis, neuroinflammation, oxidative stress as well as the formation of neurofibrillary tangles at specific brain regions. Emerging new findings related to synaptic dysfunction and initial steps of neuroinflammation in AD have been able to delineate the underlying molecular mechanisms, thus reinforcing the development of new treatment strategies and biomarkers for AD beyond the conventional Aβ- and tau-targeted approaches. Particularly, the identification and further characterization of disease-associated microglia and their RNA signatures, AD-associated novel risk genes, neurotoxic astrocytes, and in the involvement of complement-dependent pathway in synaptic pruning and loss in AD have set the outstanding basis for further preclinical and clinical studies. Here, we discuss the recent development and the key findings related to the novel molecular mechanisms and targets underlying the synaptotoxicity and neuroinflammation in AD. |
format | Online Article Text |
id | pubmed-6301995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63019952019-01-07 Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease Marttinen, Mikael Takalo, Mari Natunen, Teemu Wittrahm, Rebekka Gabbouj, Sami Kemppainen, Susanna Leinonen, Ville Tanila, Heikki Haapasalo, Annakaisa Hiltunen, Mikko Front Neurosci Neuroscience Alzheimer’s disease (AD) is the most common neurodegenerative disorder, which is clinically associated with a global cognitive decline and progressive loss of memory and reasoning. According to the prevailing amyloid cascade hypothesis of AD, increased soluble amyloid-β (Aβ) oligomer levels impair the synaptic functions and augment calcium dyshomeostasis, neuroinflammation, oxidative stress as well as the formation of neurofibrillary tangles at specific brain regions. Emerging new findings related to synaptic dysfunction and initial steps of neuroinflammation in AD have been able to delineate the underlying molecular mechanisms, thus reinforcing the development of new treatment strategies and biomarkers for AD beyond the conventional Aβ- and tau-targeted approaches. Particularly, the identification and further characterization of disease-associated microglia and their RNA signatures, AD-associated novel risk genes, neurotoxic astrocytes, and in the involvement of complement-dependent pathway in synaptic pruning and loss in AD have set the outstanding basis for further preclinical and clinical studies. Here, we discuss the recent development and the key findings related to the novel molecular mechanisms and targets underlying the synaptotoxicity and neuroinflammation in AD. Frontiers Media S.A. 2018-12-14 /pmc/articles/PMC6301995/ /pubmed/30618585 http://dx.doi.org/10.3389/fnins.2018.00963 Text en Copyright © 2018 Marttinen, Takalo, Natunen, Wittrahm, Gabbouj, Kemppainen, Leinonen, Tanila, Haapasalo and Hiltunen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Marttinen, Mikael Takalo, Mari Natunen, Teemu Wittrahm, Rebekka Gabbouj, Sami Kemppainen, Susanna Leinonen, Ville Tanila, Heikki Haapasalo, Annakaisa Hiltunen, Mikko Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title | Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title_full | Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title_fullStr | Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title_full_unstemmed | Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title_short | Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease |
title_sort | molecular mechanisms of synaptotoxicity and neuroinflammation in alzheimer’s disease |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301995/ https://www.ncbi.nlm.nih.gov/pubmed/30618585 http://dx.doi.org/10.3389/fnins.2018.00963 |
work_keys_str_mv | AT marttinenmikael molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT takalomari molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT natunenteemu molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT wittrahmrebekka molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT gabboujsami molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT kemppainensusanna molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT leinonenville molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT tanilaheikki molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT haapasaloannakaisa molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease AT hiltunenmikko molecularmechanismsofsynaptotoxicityandneuroinflammationinalzheimersdisease |