Cargando…
Global maximal inequality to a class of oscillatory integrals
In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see te...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/ https://www.ncbi.nlm.nih.gov/pubmed/30839929 http://dx.doi.org/10.1186/s13660-018-1946-x |
Sumario: | In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation. |
---|