Cargando…

Global maximal inequality to a class of oscillatory integrals

In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see te...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Ying, Niu, Yaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/
https://www.ncbi.nlm.nih.gov/pubmed/30839929
http://dx.doi.org/10.1186/s13660-018-1946-x
Descripción
Sumario:In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation.