Cargando…

Global maximal inequality to a class of oscillatory integrals

In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see te...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Ying, Niu, Yaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/
https://www.ncbi.nlm.nih.gov/pubmed/30839929
http://dx.doi.org/10.1186/s13660-018-1946-x
_version_ 1783381909085093888
author Xue, Ying
Niu, Yaoming
author_facet Xue, Ying
Niu, Yaoming
author_sort Xue, Ying
collection PubMed
description In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation.
format Online
Article
Text
id pubmed-6302062
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-63020622019-01-04 Global maximal inequality to a class of oscillatory integrals Xue, Ying Niu, Yaoming J Inequal Appl Research In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation. Springer International Publishing 2018-12-20 2018 /pmc/articles/PMC6302062/ /pubmed/30839929 http://dx.doi.org/10.1186/s13660-018-1946-x Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Xue, Ying
Niu, Yaoming
Global maximal inequality to a class of oscillatory integrals
title Global maximal inequality to a class of oscillatory integrals
title_full Global maximal inequality to a class of oscillatory integrals
title_fullStr Global maximal inequality to a class of oscillatory integrals
title_full_unstemmed Global maximal inequality to a class of oscillatory integrals
title_short Global maximal inequality to a class of oscillatory integrals
title_sort global maximal inequality to a class of oscillatory integrals
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/
https://www.ncbi.nlm.nih.gov/pubmed/30839929
http://dx.doi.org/10.1186/s13660-018-1946-x
work_keys_str_mv AT xueying globalmaximalinequalitytoaclassofoscillatoryintegrals
AT niuyaoming globalmaximalinequalitytoaclassofoscillatoryintegrals