Cargando…
Global maximal inequality to a class of oscillatory integrals
In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see te...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/ https://www.ncbi.nlm.nih.gov/pubmed/30839929 http://dx.doi.org/10.1186/s13660-018-1946-x |
_version_ | 1783381909085093888 |
---|---|
author | Xue, Ying Niu, Yaoming |
author_facet | Xue, Ying Niu, Yaoming |
author_sort | Xue, Ying |
collection | PubMed |
description | In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation. |
format | Online Article Text |
id | pubmed-6302062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-63020622019-01-04 Global maximal inequality to a class of oscillatory integrals Xue, Ying Niu, Yaoming J Inequal Appl Research In the present paper, we give the global [Formula: see text] estimates for maximal operators generated by multiparameter oscillatory integral [Formula: see text] , which is defined by [Formula: see text] where [Formula: see text] and f is a Schwartz function in [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] [Formula: see text] is a function on [Formula: see text] , which has a suitable growth condition. These estimates are apparently good extensions to the results of Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter fractional Schrödinger equation. Springer International Publishing 2018-12-20 2018 /pmc/articles/PMC6302062/ /pubmed/30839929 http://dx.doi.org/10.1186/s13660-018-1946-x Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Xue, Ying Niu, Yaoming Global maximal inequality to a class of oscillatory integrals |
title | Global maximal inequality to a class of oscillatory integrals |
title_full | Global maximal inequality to a class of oscillatory integrals |
title_fullStr | Global maximal inequality to a class of oscillatory integrals |
title_full_unstemmed | Global maximal inequality to a class of oscillatory integrals |
title_short | Global maximal inequality to a class of oscillatory integrals |
title_sort | global maximal inequality to a class of oscillatory integrals |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302062/ https://www.ncbi.nlm.nih.gov/pubmed/30839929 http://dx.doi.org/10.1186/s13660-018-1946-x |
work_keys_str_mv | AT xueying globalmaximalinequalitytoaclassofoscillatoryintegrals AT niuyaoming globalmaximalinequalitytoaclassofoscillatoryintegrals |