Cargando…
A pilot study using machine learning methods about factors influencing prognosis of dental implants
PURPOSE: This study tried to find the most significant factors predicting implant prognosis using machine learning methods. MATERIALS AND METHODS: The data used in this study was based on a systematic search of chart files at Seoul National University Bundang Hospital for one year. In this period, o...
Autores principales: | Ha, Seung-Ryong, Park, Hyun Sung, Kim, Eung-Hee, Kim, Hong-Ki, Yang, Jin-Yong, Heo, Junyoung, Yeo, In-Sung Luke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Prosthodontics
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302082/ https://www.ncbi.nlm.nih.gov/pubmed/30584467 http://dx.doi.org/10.4047/jap.2018.10.6.395 |
Ejemplares similares
-
Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics
por: Kim, Hee-Kyung, et al.
Publicado: (2016) -
Special Issue: Dental Implant Materials 2019
por: Yeo, In-Sung Luke
Publicado: (2020) -
Biological Responses to the Transitional Area of Dental Implants: Material- and Structure-Dependent Responses of Peri-Implant Tissue to Abutments
por: Kim, Jung-Ju, et al.
Publicado: (2019) -
Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration
por: Yeo, In-Sung Luke
Publicado: (2019) -
The effect of the thread depth on the mechanical properties of the dental implant
por: Lee, Sun-Young, et al.
Publicado: (2015)