Cargando…
High-throughput binding affinity calculations at extreme scales
BACKGROUND: Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overco...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302294/ https://www.ncbi.nlm.nih.gov/pubmed/30577753 http://dx.doi.org/10.1186/s12859-018-2506-6 |
Sumario: | BACKGROUND: Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights into the binding free energy and the residence time of a ligand, which can inform both stratified and personal treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the binding free energy on high-performance computing resources, we introduce the High-throughput Binding Affinity Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance. RESULTS: We demonstrate close to perfect weak scaling to hundreds of concurrent multi-stage binding affinity calculation pipelines. This permits a rapid time-to-solution that is essentially invariant of the calculation protocol, size of candidate ligands and number of ensemble simulations. CONCLUSIONS: As such, HTBAC advances the state of the art of binding affinity calculations and protocols. HTBAC provides the platform to enable scientists to study a wide range of cancer drugs and candidate ligands in order to support personalized clinical decision making based on genome sequencing and drug discovery. |
---|