Cargando…

Strain-Stiffening in Dynamic Supramolecular Fiber Networks

[Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive....

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Castaño Romera, Marcos, Lou, Xianwen, Schill, Jurgen, ter Huurne, Gijs, Fransen, Peter-Paul K. H., Voets, Ilja K., Storm, Cornelis, Sijbesma, Rint P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302312/
https://www.ncbi.nlm.nih.gov/pubmed/30465604
http://dx.doi.org/10.1021/jacs.8b09289
_version_ 1783381957878480896
author Fernández-Castaño Romera, Marcos
Lou, Xianwen
Schill, Jurgen
ter Huurne, Gijs
Fransen, Peter-Paul K. H.
Voets, Ilja K.
Storm, Cornelis
Sijbesma, Rint P.
author_facet Fernández-Castaño Romera, Marcos
Lou, Xianwen
Schill, Jurgen
ter Huurne, Gijs
Fransen, Peter-Paul K. H.
Voets, Ilja K.
Storm, Cornelis
Sijbesma, Rint P.
author_sort Fernández-Castaño Romera, Marcos
collection PubMed
description [Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening.
format Online
Article
Text
id pubmed-6302312
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-63023122018-12-25 Strain-Stiffening in Dynamic Supramolecular Fiber Networks Fernández-Castaño Romera, Marcos Lou, Xianwen Schill, Jurgen ter Huurne, Gijs Fransen, Peter-Paul K. H. Voets, Ilja K. Storm, Cornelis Sijbesma, Rint P. J Am Chem Soc [Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening. American Chemical Society 2018-11-22 2018-12-19 /pmc/articles/PMC6302312/ /pubmed/30465604 http://dx.doi.org/10.1021/jacs.8b09289 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Fernández-Castaño Romera, Marcos
Lou, Xianwen
Schill, Jurgen
ter Huurne, Gijs
Fransen, Peter-Paul K. H.
Voets, Ilja K.
Storm, Cornelis
Sijbesma, Rint P.
Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title_full Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title_fullStr Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title_full_unstemmed Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title_short Strain-Stiffening in Dynamic Supramolecular Fiber Networks
title_sort strain-stiffening in dynamic supramolecular fiber networks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302312/
https://www.ncbi.nlm.nih.gov/pubmed/30465604
http://dx.doi.org/10.1021/jacs.8b09289
work_keys_str_mv AT fernandezcastanoromeramarcos strainstiffeningindynamicsupramolecularfibernetworks
AT louxianwen strainstiffeningindynamicsupramolecularfibernetworks
AT schilljurgen strainstiffeningindynamicsupramolecularfibernetworks
AT terhuurnegijs strainstiffeningindynamicsupramolecularfibernetworks
AT fransenpeterpaulkh strainstiffeningindynamicsupramolecularfibernetworks
AT voetsiljak strainstiffeningindynamicsupramolecularfibernetworks
AT stormcornelis strainstiffeningindynamicsupramolecularfibernetworks
AT sijbesmarintp strainstiffeningindynamicsupramolecularfibernetworks