Cargando…
Strain-Stiffening in Dynamic Supramolecular Fiber Networks
[Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302312/ https://www.ncbi.nlm.nih.gov/pubmed/30465604 http://dx.doi.org/10.1021/jacs.8b09289 |
_version_ | 1783381957878480896 |
---|---|
author | Fernández-Castaño Romera, Marcos Lou, Xianwen Schill, Jurgen ter Huurne, Gijs Fransen, Peter-Paul K. H. Voets, Ilja K. Storm, Cornelis Sijbesma, Rint P. |
author_facet | Fernández-Castaño Romera, Marcos Lou, Xianwen Schill, Jurgen ter Huurne, Gijs Fransen, Peter-Paul K. H. Voets, Ilja K. Storm, Cornelis Sijbesma, Rint P. |
author_sort | Fernández-Castaño Romera, Marcos |
collection | PubMed |
description | [Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening. |
format | Online Article Text |
id | pubmed-6302312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-63023122018-12-25 Strain-Stiffening in Dynamic Supramolecular Fiber Networks Fernández-Castaño Romera, Marcos Lou, Xianwen Schill, Jurgen ter Huurne, Gijs Fransen, Peter-Paul K. H. Voets, Ilja K. Storm, Cornelis Sijbesma, Rint P. J Am Chem Soc [Image: see text] The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening. American Chemical Society 2018-11-22 2018-12-19 /pmc/articles/PMC6302312/ /pubmed/30465604 http://dx.doi.org/10.1021/jacs.8b09289 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Fernández-Castaño Romera, Marcos Lou, Xianwen Schill, Jurgen ter Huurne, Gijs Fransen, Peter-Paul K. H. Voets, Ilja K. Storm, Cornelis Sijbesma, Rint P. Strain-Stiffening in Dynamic Supramolecular Fiber Networks |
title | Strain-Stiffening
in Dynamic Supramolecular Fiber
Networks |
title_full | Strain-Stiffening
in Dynamic Supramolecular Fiber
Networks |
title_fullStr | Strain-Stiffening
in Dynamic Supramolecular Fiber
Networks |
title_full_unstemmed | Strain-Stiffening
in Dynamic Supramolecular Fiber
Networks |
title_short | Strain-Stiffening
in Dynamic Supramolecular Fiber
Networks |
title_sort | strain-stiffening
in dynamic supramolecular fiber
networks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302312/ https://www.ncbi.nlm.nih.gov/pubmed/30465604 http://dx.doi.org/10.1021/jacs.8b09289 |
work_keys_str_mv | AT fernandezcastanoromeramarcos strainstiffeningindynamicsupramolecularfibernetworks AT louxianwen strainstiffeningindynamicsupramolecularfibernetworks AT schilljurgen strainstiffeningindynamicsupramolecularfibernetworks AT terhuurnegijs strainstiffeningindynamicsupramolecularfibernetworks AT fransenpeterpaulkh strainstiffeningindynamicsupramolecularfibernetworks AT voetsiljak strainstiffeningindynamicsupramolecularfibernetworks AT stormcornelis strainstiffeningindynamicsupramolecularfibernetworks AT sijbesmarintp strainstiffeningindynamicsupramolecularfibernetworks |