Cargando…
Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm
BACKGROUND: Gene signatures are important to represent the molecular changes in the disease genomes or the cells in specific conditions, and have been often used to separate samples into different groups for better research or clinical treatment. While many methods and applications have been availab...
Autores principales: | Mallik, Saurav, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302366/ https://www.ncbi.nlm.nih.gov/pubmed/30577846 http://dx.doi.org/10.1186/s12918-018-0650-2 |
Ejemplares similares
-
Identification of gene signature in RNA-Seq hepatocellular carcinoma data by Pareto-optimal cluster algorithm
por: Kenarangi, Taiebe, et al.
Publicado: (2022) -
Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer
por: Bhadra, Tapas, et al.
Publicado: (2022) -
Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles
por: Mallik, Saurav, et al.
Publicado: (2019) -
Detecting methylation signatures in neurodegenerative disease by density-based clustering of applications with reducing noise
por: Mallik, Saurav, et al.
Publicado: (2020) -
Signature of Pareto optimization in the Escherichia coli proteome
por: Koçillari, Loren, et al.
Publicado: (2018)