Cargando…

Magnetic resonance images and measurements of the volume, proportion, and longitudinal distribution of contractile and non-contractile tissue in the dorsi- and plantar flexor muscles of healthy young and older adults

OBJECTIVE: This paper presents magnetic resonance images of the dorsi- and plantar flexor muscles for individual young and older healthy adults. Also included are measurements of the volume, proportion, and longitudinal distribution of contractile and non-contractile tissue. This dataset was previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasson, Christopher J., Kent, Jane A., Caldwell, Graham E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302418/
https://www.ncbi.nlm.nih.gov/pubmed/30572934
http://dx.doi.org/10.1186/s13104-018-4026-x
Descripción
Sumario:OBJECTIVE: This paper presents magnetic resonance images of the dorsi- and plantar flexor muscles for individual young and older healthy adults. Also included are measurements of the volume, proportion, and longitudinal distribution of contractile and non-contractile tissue. This dataset was previously used to quantify age-related differences in these measures, constrain subject- and muscle-specific estimates of dorsi- and plantar flexor maximal isometric force capability, and quantify the degree to which maximal isometric force capability explains the age-related variance in postural control. DATA DESCRIPTION: The data include contiguous axial magnetic resonance images of the lower leg for 12 young (21–31 years) and 12 older (66–79 years) healthy adults. The data are in the form of MATLAB binary files with a freely distributable custom MATLAB analysis program that allows image viewing and navigation in two and three dimensions, muscle outlining, tissue segmentation, and cross-sectional area calculation. The latter measurements are contained in a set of companion MATLAB binary files, which are included with the image data files. If desired, the magnetic resonance images could be used to identify other anatomical structures, or the MATLAB programs could be used to analyze other image sets.