Cargando…

CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research

BACKGROUND: Current multi-petaflop supercomputers are powerful systems, but present challenges when faced with problems requiring large machine learning workflows. Complex algorithms running at system scale, often with different patterns that require disparate software packages and complex data flow...

Descripción completa

Detalles Bibliográficos
Autores principales: Wozniak, Justin M., Jain, Rajeev, Balaprakash, Prasanna, Ozik, Jonathan, Collier, Nicholson T., Bauer, John, Xia, Fangfang, Brettin, Thomas, Stevens, Rick, Mohd-Yusof, Jamaludin, Cardona, Cristina Garcia, Essen, Brian Van, Baughman, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302440/
https://www.ncbi.nlm.nih.gov/pubmed/30577736
http://dx.doi.org/10.1186/s12859-018-2508-4
_version_ 1783381979782184960
author Wozniak, Justin M.
Jain, Rajeev
Balaprakash, Prasanna
Ozik, Jonathan
Collier, Nicholson T.
Bauer, John
Xia, Fangfang
Brettin, Thomas
Stevens, Rick
Mohd-Yusof, Jamaludin
Cardona, Cristina Garcia
Essen, Brian Van
Baughman, Matthew
author_facet Wozniak, Justin M.
Jain, Rajeev
Balaprakash, Prasanna
Ozik, Jonathan
Collier, Nicholson T.
Bauer, John
Xia, Fangfang
Brettin, Thomas
Stevens, Rick
Mohd-Yusof, Jamaludin
Cardona, Cristina Garcia
Essen, Brian Van
Baughman, Matthew
author_sort Wozniak, Justin M.
collection PubMed
description BACKGROUND: Current multi-petaflop supercomputers are powerful systems, but present challenges when faced with problems requiring large machine learning workflows. Complex algorithms running at system scale, often with different patterns that require disparate software packages and complex data flows cause difficulties in assembling and managing large experiments on these machines. RESULTS: This paper presents a workflow system that makes progress on scaling machine learning ensembles, specifically in this first release, ensembles of deep neural networks that address problems in cancer research across the atomistic, molecular and population scales. The initial release of the application framework that we call CANDLE/Supervisor addresses the problem of hyper-parameter exploration of deep neural networks. CONCLUSIONS: Initial results demonstrating CANDLE on DOE systems at ORNL, ANL and NERSC (Titan, Theta and Cori, respectively) demonstrate both scaling and multi-platform execution.
format Online
Article
Text
id pubmed-6302440
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-63024402018-12-31 CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research Wozniak, Justin M. Jain, Rajeev Balaprakash, Prasanna Ozik, Jonathan Collier, Nicholson T. Bauer, John Xia, Fangfang Brettin, Thomas Stevens, Rick Mohd-Yusof, Jamaludin Cardona, Cristina Garcia Essen, Brian Van Baughman, Matthew BMC Bioinformatics Methodology BACKGROUND: Current multi-petaflop supercomputers are powerful systems, but present challenges when faced with problems requiring large machine learning workflows. Complex algorithms running at system scale, often with different patterns that require disparate software packages and complex data flows cause difficulties in assembling and managing large experiments on these machines. RESULTS: This paper presents a workflow system that makes progress on scaling machine learning ensembles, specifically in this first release, ensembles of deep neural networks that address problems in cancer research across the atomistic, molecular and population scales. The initial release of the application framework that we call CANDLE/Supervisor addresses the problem of hyper-parameter exploration of deep neural networks. CONCLUSIONS: Initial results demonstrating CANDLE on DOE systems at ORNL, ANL and NERSC (Titan, Theta and Cori, respectively) demonstrate both scaling and multi-platform execution. BioMed Central 2018-12-21 /pmc/articles/PMC6302440/ /pubmed/30577736 http://dx.doi.org/10.1186/s12859-018-2508-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Wozniak, Justin M.
Jain, Rajeev
Balaprakash, Prasanna
Ozik, Jonathan
Collier, Nicholson T.
Bauer, John
Xia, Fangfang
Brettin, Thomas
Stevens, Rick
Mohd-Yusof, Jamaludin
Cardona, Cristina Garcia
Essen, Brian Van
Baughman, Matthew
CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title_full CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title_fullStr CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title_full_unstemmed CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title_short CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
title_sort candle/supervisor: a workflow framework for machine learning applied to cancer research
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302440/
https://www.ncbi.nlm.nih.gov/pubmed/30577736
http://dx.doi.org/10.1186/s12859-018-2508-4
work_keys_str_mv AT wozniakjustinm candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT jainrajeev candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT balaprakashprasanna candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT ozikjonathan candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT colliernicholsont candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT bauerjohn candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT xiafangfang candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT brettinthomas candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT stevensrick candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT mohdyusofjamaludin candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT cardonacristinagarcia candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT essenbrianvan candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch
AT baughmanmatthew candlesupervisoraworkflowframeworkformachinelearningappliedtocancerresearch