Cargando…
CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
BACKGROUND: Current multi-petaflop supercomputers are powerful systems, but present challenges when faced with problems requiring large machine learning workflows. Complex algorithms running at system scale, often with different patterns that require disparate software packages and complex data flow...
Autores principales: | Wozniak, Justin M., Jain, Rajeev, Balaprakash, Prasanna, Ozik, Jonathan, Collier, Nicholson T., Bauer, John, Xia, Fangfang, Brettin, Thomas, Stevens, Rick, Mohd-Yusof, Jamaludin, Cardona, Cristina Garcia, Essen, Brian Van, Baughman, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302440/ https://www.ncbi.nlm.nih.gov/pubmed/30577736 http://dx.doi.org/10.1186/s12859-018-2508-4 |
Ejemplares similares
-
High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow
por: Ozik, Jonathan, et al.
Publicado: (2018) -
Candles of darkness
Publicado: (2017) -
Physiological Candles
Publicado: (1889) -
Physiological Candles
Publicado: (1889) -
Alaska Candles
Publicado: (1874)