Cargando…
Scalable deep text comprehension for Cancer surveillance on high-performance computing
BACKGROUND: Deep Learning (DL) has advanced the state-of-the-art capabilities in bioinformatics applications which has resulted in trends of increasingly sophisticated and computationally demanding models trained by larger and larger data sets. This vastly increased computational demand challenges t...
Autores principales: | Qiu, John X., Yoon, Hong-Jun, Srivastava, Kshitij, Watson, Thomas P., Blair Christian, J., Ramanathan, Arvind, Wu, Xiao C., Fearn, Paul A., Tourassi, Georgia D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302459/ https://www.ncbi.nlm.nih.gov/pubmed/30577743 http://dx.doi.org/10.1186/s12859-018-2511-9 |
Ejemplares similares
-
Hierarchical attention networks for information extraction from cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2018) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
CAT: computer aided triage improving upon the Bayes risk through ε-refusal triage rules
por: Hengartner, Nicolas, et al.
Publicado: (2018) -
A scalable framework for smart COVID surveillance in the workplace using Deep Neural Networks and cloud computing
por: Singh, Ajay, et al.
Publicado: (2021) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022)