Cargando…
Towards practical privacy-preserving genome-wide association study
BACKGROUND: The deployment of Genome-wide association studies (GWASs) requires genomic information of a large population to produce reliable results. This raises significant privacy concerns, making people hesitate to contribute their genetic information to such studies. RESULTS: We propose two prov...
Autores principales: | Bonte, Charlotte, Makri, Eleftheria, Ardeshirdavani, Amin, Simm, Jaak, Moreau, Yves, Vercauteren, Frederik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302495/ https://www.ncbi.nlm.nih.gov/pubmed/30572817 http://dx.doi.org/10.1186/s12859-018-2541-3 |
Ejemplares similares
-
Privacy-preserving logistic regression training
por: Bonte, Charlotte, et al.
Publicado: (2018) -
Splitting chemical structure data sets for federated privacy-preserving machine learning
por: Simm, Jaak, et al.
Publicado: (2021) -
Realizing privacy preserving genome-wide association studies
por: Simmons, Sean, et al.
Publicado: (2016) -
A new way to protect privacy in large-scale genome-wide association studies
por: Kamm, Liina, et al.
Publicado: (2013) -
Privacy-preserving federated genome-wide association studies via dynamic sampling
por: Wang, Xinyue, et al.
Publicado: (2023)