Cargando…
Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis
BACKGROUND: Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302516/ https://www.ncbi.nlm.nih.gov/pubmed/30572959 http://dx.doi.org/10.1186/s13046-018-0993-y |
_version_ | 1783381997204275200 |
---|---|
author | Zhang, Xing Li, Zheng Xuan, Zhe Xu, Penghui Wang, Weizhi Chen, Zheng Wang, Sen Sun, Guangli Xu, Jianghao Xu, Zekuan |
author_facet | Zhang, Xing Li, Zheng Xuan, Zhe Xu, Penghui Wang, Weizhi Chen, Zheng Wang, Sen Sun, Guangli Xu, Jianghao Xu, Zekuan |
author_sort | Zhang, Xing |
collection | PubMed |
description | BACKGROUND: Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle which has been discovered to be a new energy source for tumor cells recently. By means of degrading intracellular particles including amino acids, nucleotides, fatty acids, sugars and aged organisms, autophagy can recycle the aforementioned particles into bioenergetics and biosynthesis pathways, finally favoring tumor cells. MicroRNA is a kind of noncoding RNA that regulates the targeting gene expression mostly at post-transcription level. Among these miRNAs, microRNA-133a-3p is reported to be a tumor suppressor in numerous cancers. METHODS: We characterized the down-regulated expression level of microRNA-133a-3p in gastric cancer via TCGA database. Subsequently, we verified the tumor suppressor role of microRNA-133a-3p in gastric cancer cells through a series biological function assay. We used immunofluorescence and transmission electron microscope to observe the negative effect of microRNA-133a-3p on autophagy and used dual-luciferase report assay to identify the candidate gene GABARAPL1 of microRNA-133A-3p.Then we used high performance liquid phase mass spectrometry and seahorse analysis to detect whether miR-133a-3p could block the glutaminolysis metabolism through autophagy. At last, we confirmed the tumor suppressor role of microRNA-133a-3p in vivo on PDX mice model. RESULTS: We demonstrated that microRNA-133a-3p overexpression could block the activation of autophagy to ruin the abnormal glutaminolysis and further inhibit the growth and metastasis of gastric cancer cells. We successfully proved gastric cancer cells can replenish glutaminolysis via autophagy and microRNA-133a-3p could block aforementioned pathway by targeting core autophagy participants GABARAPL1 and ATG13.We then verified the negative function of microRNA-133a-3p on autophagy-mediated glutaminolysis both in PDX model and human gastric cancer organoid model. CONCLUSIONS: MicroRNA-133a-3p targets GABARAPL1 to block autophagy-mediated glutaminolysis, further repressing gastric cancer growth and metastasis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-018-0993-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6302516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63025162018-12-31 Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis Zhang, Xing Li, Zheng Xuan, Zhe Xu, Penghui Wang, Weizhi Chen, Zheng Wang, Sen Sun, Guangli Xu, Jianghao Xu, Zekuan J Exp Clin Cancer Res Research BACKGROUND: Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle which has been discovered to be a new energy source for tumor cells recently. By means of degrading intracellular particles including amino acids, nucleotides, fatty acids, sugars and aged organisms, autophagy can recycle the aforementioned particles into bioenergetics and biosynthesis pathways, finally favoring tumor cells. MicroRNA is a kind of noncoding RNA that regulates the targeting gene expression mostly at post-transcription level. Among these miRNAs, microRNA-133a-3p is reported to be a tumor suppressor in numerous cancers. METHODS: We characterized the down-regulated expression level of microRNA-133a-3p in gastric cancer via TCGA database. Subsequently, we verified the tumor suppressor role of microRNA-133a-3p in gastric cancer cells through a series biological function assay. We used immunofluorescence and transmission electron microscope to observe the negative effect of microRNA-133a-3p on autophagy and used dual-luciferase report assay to identify the candidate gene GABARAPL1 of microRNA-133A-3p.Then we used high performance liquid phase mass spectrometry and seahorse analysis to detect whether miR-133a-3p could block the glutaminolysis metabolism through autophagy. At last, we confirmed the tumor suppressor role of microRNA-133a-3p in vivo on PDX mice model. RESULTS: We demonstrated that microRNA-133a-3p overexpression could block the activation of autophagy to ruin the abnormal glutaminolysis and further inhibit the growth and metastasis of gastric cancer cells. We successfully proved gastric cancer cells can replenish glutaminolysis via autophagy and microRNA-133a-3p could block aforementioned pathway by targeting core autophagy participants GABARAPL1 and ATG13.We then verified the negative function of microRNA-133a-3p on autophagy-mediated glutaminolysis both in PDX model and human gastric cancer organoid model. CONCLUSIONS: MicroRNA-133a-3p targets GABARAPL1 to block autophagy-mediated glutaminolysis, further repressing gastric cancer growth and metastasis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-018-0993-y) contains supplementary material, which is available to authorized users. BioMed Central 2018-12-20 /pmc/articles/PMC6302516/ /pubmed/30572959 http://dx.doi.org/10.1186/s13046-018-0993-y Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zhang, Xing Li, Zheng Xuan, Zhe Xu, Penghui Wang, Weizhi Chen, Zheng Wang, Sen Sun, Guangli Xu, Jianghao Xu, Zekuan Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title | Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title_full | Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title_fullStr | Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title_full_unstemmed | Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title_short | Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
title_sort | novel role of mir-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302516/ https://www.ncbi.nlm.nih.gov/pubmed/30572959 http://dx.doi.org/10.1186/s13046-018-0993-y |
work_keys_str_mv | AT zhangxing novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT lizheng novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT xuanzhe novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT xupenghui novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT wangweizhi novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT chenzheng novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT wangsen novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT sunguangli novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT xujianghao novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis AT xuzekuan novelroleofmir133a3pinrepressinggastriccancergrowthandmetastasisviablockingautophagymediatedglutaminolysis |