Cargando…

Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States

Increasingly, routine surveillance and monitoring of foodborne pathogens using whole-genome sequencing is creating opportunities to study foodborne illness epidemiology beyond routine outbreak investigations and case–control studies. Using a global phylogeny of Salmonella enterica serotype Typhimuri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shaokang, Li, Shaoting, Gu, Weidong, den Bakker, Henk, Boxrud, Dave, Taylor, Angie, Roe, Chandler, Driebe, Elizabeth, Engelthaler, David M., Allard, Marc, Brown, Eric, McDermott, Patrick, Zhao, Shaohua, Bruce, Beau B., Trees, Eija, Fields, Patricia I., Deng, Xiangyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302586/
https://www.ncbi.nlm.nih.gov/pubmed/30561314
http://dx.doi.org/10.3201/eid2501.180835
_version_ 1783382011939913728
author Zhang, Shaokang
Li, Shaoting
Gu, Weidong
den Bakker, Henk
Boxrud, Dave
Taylor, Angie
Roe, Chandler
Driebe, Elizabeth
Engelthaler, David M.
Allard, Marc
Brown, Eric
McDermott, Patrick
Zhao, Shaohua
Bruce, Beau B.
Trees, Eija
Fields, Patricia I.
Deng, Xiangyu
author_facet Zhang, Shaokang
Li, Shaoting
Gu, Weidong
den Bakker, Henk
Boxrud, Dave
Taylor, Angie
Roe, Chandler
Driebe, Elizabeth
Engelthaler, David M.
Allard, Marc
Brown, Eric
McDermott, Patrick
Zhao, Shaohua
Bruce, Beau B.
Trees, Eija
Fields, Patricia I.
Deng, Xiangyu
author_sort Zhang, Shaokang
collection PubMed
description Increasingly, routine surveillance and monitoring of foodborne pathogens using whole-genome sequencing is creating opportunities to study foodborne illness epidemiology beyond routine outbreak investigations and case–control studies. Using a global phylogeny of Salmonella enterica serotype Typhimurium, we found that major livestock sources of the pathogen in the United States can be predicted through whole-genome sequencing data. Relatively steady rates of sequence divergence in livestock lineages enabled the inference of their recent origins. Elevated accumulation of lineage-specific pseudogenes after divergence from generalist populations and possible metabolic acclimation in a representative swine isolate indicates possible emergence of host adaptation. We developed and retrospectively applied a machine learning Random Forest classifier for genomic source prediction of Salmonella Typhimurium that correctly attributed 7 of 8 major zoonotic outbreaks in the United States during 1998–2013. We further identified 50 key genetic features that were sufficient for robust livestock source prediction.
format Online
Article
Text
id pubmed-6302586
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Centers for Disease Control and Prevention
record_format MEDLINE/PubMed
spelling pubmed-63025862019-01-01 Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States Zhang, Shaokang Li, Shaoting Gu, Weidong den Bakker, Henk Boxrud, Dave Taylor, Angie Roe, Chandler Driebe, Elizabeth Engelthaler, David M. Allard, Marc Brown, Eric McDermott, Patrick Zhao, Shaohua Bruce, Beau B. Trees, Eija Fields, Patricia I. Deng, Xiangyu Emerg Infect Dis Research Increasingly, routine surveillance and monitoring of foodborne pathogens using whole-genome sequencing is creating opportunities to study foodborne illness epidemiology beyond routine outbreak investigations and case–control studies. Using a global phylogeny of Salmonella enterica serotype Typhimurium, we found that major livestock sources of the pathogen in the United States can be predicted through whole-genome sequencing data. Relatively steady rates of sequence divergence in livestock lineages enabled the inference of their recent origins. Elevated accumulation of lineage-specific pseudogenes after divergence from generalist populations and possible metabolic acclimation in a representative swine isolate indicates possible emergence of host adaptation. We developed and retrospectively applied a machine learning Random Forest classifier for genomic source prediction of Salmonella Typhimurium that correctly attributed 7 of 8 major zoonotic outbreaks in the United States during 1998–2013. We further identified 50 key genetic features that were sufficient for robust livestock source prediction. Centers for Disease Control and Prevention 2019-01 /pmc/articles/PMC6302586/ /pubmed/30561314 http://dx.doi.org/10.3201/eid2501.180835 Text en https://creativecommons.org/licenses/by/4.0/This is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited.
spellingShingle Research
Zhang, Shaokang
Li, Shaoting
Gu, Weidong
den Bakker, Henk
Boxrud, Dave
Taylor, Angie
Roe, Chandler
Driebe, Elizabeth
Engelthaler, David M.
Allard, Marc
Brown, Eric
McDermott, Patrick
Zhao, Shaohua
Bruce, Beau B.
Trees, Eija
Fields, Patricia I.
Deng, Xiangyu
Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title_full Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title_fullStr Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title_full_unstemmed Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title_short Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States
title_sort zoonotic source attribution of salmonella enterica serotype typhimurium using genomic surveillance data, united states
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302586/
https://www.ncbi.nlm.nih.gov/pubmed/30561314
http://dx.doi.org/10.3201/eid2501.180835
work_keys_str_mv AT zhangshaokang zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT lishaoting zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT guweidong zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT denbakkerhenk zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT boxruddave zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT taylorangie zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT roechandler zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT driebeelizabeth zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT engelthalerdavidm zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT allardmarc zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT browneric zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT mcdermottpatrick zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT zhaoshaohua zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT brucebeaub zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT treeseija zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT fieldspatriciai zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates
AT dengxiangyu zoonoticsourceattributionofsalmonellaentericaserotypetyphimuriumusinggenomicsurveillancedataunitedstates