Cargando…
Deep clustering of protein folding simulations
BACKGROUND: We examine the problem of clustering biomolecular simulations using deep learning techniques. Since biomolecular simulation datasets are inherently high dimensional, it is often necessary to build low dimensional representations that can be used to extract quantitative insights into the...
Autores principales: | Bhowmik, Debsindhu, Gao, Shang, Young, Michael T., Ramanathan, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302667/ https://www.ncbi.nlm.nih.gov/pubmed/30577777 http://dx.doi.org/10.1186/s12859-018-2507-5 |
Ejemplares similares
-
Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis
por: Ramanathan, Arvind, et al.
Publicado: (2011) -
FoldHSphere: deep hyperspherical embeddings for protein fold recognition
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2021) -
Deep learning workflow for the inverse design of molecules with specific optoelectronic properties
por: Yoo, Pilsun, et al.
Publicado: (2023) -
Using GANs with adaptive training data to search for new molecules
por: Blanchard, Andrew E., et al.
Publicado: (2021) -
PolyFold: An interactive visual simulator for distance-based protein folding
por: McGehee, Andrew J., et al.
Publicado: (2020)