Cargando…
Implementation of Q learning and deep Q network for controlling a self balancing robot model
In this paper, the implementations of two reinforcement learnings namely, Q learning and deep Q network (DQN) on the Gazebo model of a self balancing robot have been discussed. The goal of the experiments is to make the robot model learn the best actions for staying balanced in an environment. The m...
Autores principales: | Rahman, MD Muhaimin, Rashid, S. M. Hasanur, Hossain, M. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302870/ https://www.ncbi.nlm.nih.gov/pubmed/30613463 http://dx.doi.org/10.1186/s40638-018-0091-9 |
Ejemplares similares
-
Deep Q-Learning in Robotics: Improvement of Accuracy and Repeatability
por: Sumanas, Marius, et al.
Publicado: (2022) -
Deep Q-network for social robotics using emotional social signals
por: Belo, José Pedro R., et al.
Publicado: (2022) -
Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
por: Ohnishi, Shota, et al.
Publicado: (2019) -
A Deep Q-Network based hand gesture recognition system for control of robotic platforms
por: Cruz, Patricio J., et al.
Publicado: (2023) -
Q-LBR: Q-Learning Based Load Balancing Routing for UAV-Assisted VANET
por: Roh, Bong-Soo, et al.
Publicado: (2020)