Cargando…

Transcriptome analysis of maca (Lepidium meyenii) root at different developmental stages

PREMISE OF THE STUDY: Maca (Lepidium meyenii; Brassicaceae) has been cultivated by Andeans for thousands of years as a food source and has been used for medicinal purposes. However, little is known about the mechanism underlying material accumulation during plant growth. METHODS: RNA‐Seq technology...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Rui‐Guang, Yang, Pu, Wang, Bing‐Yi, Zhao, Zun‐Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303156/
https://www.ncbi.nlm.nih.gov/pubmed/30598864
http://dx.doi.org/10.1002/aps3.1206
Descripción
Sumario:PREMISE OF THE STUDY: Maca (Lepidium meyenii; Brassicaceae) has been cultivated by Andeans for thousands of years as a food source and has been used for medicinal purposes. However, little is known about the mechanism underlying material accumulation during plant growth. METHODS: RNA‐Seq technology was used to compare the transcriptome of black maca root at three developmental stages. Gene Ontology term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied for the identification of pathways in which differentially expressed genes were significantly enriched. RESULTS: Trinity was used to de novo assemble the reads, and 120,664 unigenes were assembled. Of these, 71.53% of the unigenes were annotated based on BLAST. A total of 18,321 differentially expressed genes were observed. Gene Ontology term enrichment analysis found that the most highly represented pathway among the differentially expressed genes was for genes involved in starch and sucrose metabolism. We also found that genes involved in secondary metabolite biosynthesis, such as glucosinolate biosynthesis, were significantly enriched. DISCUSSION: The genes that were differentially expressed between developmental time points likely reflect both developmental pathways and responses to changes in the environment. As such, the transcriptome data in this study serve as a reference for subsequent mining of genes that are involved in the synthesis of important bioactive components in maca.