Cargando…

Role of transient receptor potential channels in regulating spermatozoa functions: A mini-review

Flagellar navigation along the genital tract of male and female in spermatozoa is accomplished through a number of biological, physiological, biochemical, and electrophysiological alterations in spermatozoa. These alterations are highly precise, dynamic, and regulated through a number of ion channel...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Akshay, Mishra, Abhishek Kumar, Swain, Dilip Kumar, Singh, Vijay, Yadav, Sarvajeet, Saxena, Atul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Veterinary World 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303503/
https://www.ncbi.nlm.nih.gov/pubmed/30587898
http://dx.doi.org/10.14202/vetworld.2018.1618-1623
Descripción
Sumario:Flagellar navigation along the genital tract of male and female in spermatozoa is accomplished through a number of biological, physiological, biochemical, and electrophysiological alterations in spermatozoa. These alterations are highly precise, dynamic, and regulated through a number of ion channels along with their associated pathways. Beating of flagella along with intracellular metabolism of spermatozoa is associated with fluxing of Ca++ as well as release of Ca++ from different sources. Calcium fluxing through the spermatozoa is mediated through sperm-specific calcium channel and also through transient receptor potential (TRP) channels which are diversified multifamily of ion channels which are activated through a number of extracellular agents such as pH, temperature, chemicals, and pathogens. Research has shown the dynamic role of TRP channels in regulating sperm functions such as sperm chemotaxis, rheotaxis, thermotaxis, and eventually fertilization. Diversified forms of TRP and their involvement in regulation of sperm function opens new horizons of understanding of the sperm function and, in specific, issues related to infertility. This mini-review is an attempt to draw some insights into the action of TRP channels in regulating sperm fertility competence through both calcium-dependent and calcium-independent mechanisms.