Cargando…
Contrasting patterns of neutral and functional genetic diversity in stable and disturbed environments
Genetic structure among and diversity within natural populations is influenced by a combination of ecological and evolutionary processes. These processes can differently influence neutral and functional genetic diversity and also vary according to environmental settings. To investigate the roles of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303714/ https://www.ncbi.nlm.nih.gov/pubmed/30598801 http://dx.doi.org/10.1002/ece3.4667 |
Sumario: | Genetic structure among and diversity within natural populations is influenced by a combination of ecological and evolutionary processes. These processes can differently influence neutral and functional genetic diversity and also vary according to environmental settings. To investigate the roles of interacting processes as drivers of population‐level genetic diversity in the wild, we compared neutral and functional structure and diversity between 20 Tetrix undulata pygmy grasshopper populations in disturbed and stable habitats. Genetic differentiation was evident among the different populations, but there was no genetic separation between stable and disturbed environments. The incidence of long‐winged phenotypes was higher in disturbed habitats, indicating that these populations were recently established by flight‐capable colonizers. Color morph diversity and dispersion of outlier genetic diversity, estimated using AFLP markers, were higher in disturbed than in stable environments, likely reflecting that color polymorphism and variation in other functionally important traits increase establishment success. Neutral genetic diversity estimated using AFLP markers was lower in disturbed habitats, indicating stronger eroding effects on neutral diversity of genetic drift associated with founding events in disturbed compared to stable habitats. Functional diversity and neutral diversity were negatively correlated across populations, highlighting the utility of outlier loci in genetics studies and reinforcing that estimates of genetic diversity based on neutral markers do not infer evolutionary potential and the ability of populations and species to cope with environmental change. |
---|