Cargando…
Fast and scalable neural embedding models for biomedical sentence classification
BACKGROUND: Biomedical literature is expanding rapidly, and tools that help locate information of interest are needed. To this end, a multitude of different approaches for classifying sentences in biomedical publications according to their coarse semantic and rhetoric categories (e.g., Background, M...
Autores principales: | Agibetov, Asan, Blagec, Kathrin, Xu, Hong, Samwald, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303852/ https://www.ncbi.nlm.nih.gov/pubmed/30577747 http://dx.doi.org/10.1186/s12859-018-2496-4 |
Ejemplares similares
-
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
por: Blagec, Kathrin, et al.
Publicado: (2019) -
The roles of predictors in cardiovascular risk models - a question of modeling culture?
por: Wallisch, Christine, et al.
Publicado: (2021) -
A curated, ontology-based, large-scale knowledge graph of artificial intelligence tasks and benchmarks
por: Blagec, Kathrin, et al.
Publicado: (2022) -
Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: a mixed methods study
por: Blagec, Kathrin, et al.
Publicado: (2016) -
Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records
por: Chen, Qingyu, et al.
Publicado: (2020)