Cargando…
Approximate Bayesian neural networks in genomic prediction
BACKGROUND: Genome-wide marker data are used both in phenotypic genome-wide association studies (GWAS) and genome-wide prediction (GWP). Typically, such studies include high-dimensional data with thousands to millions of single nucleotide polymorphisms (SNPs) recorded in hundreds to a few thousands...
Autor principal: | Waldmann, Patrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303864/ https://www.ncbi.nlm.nih.gov/pubmed/30577737 http://dx.doi.org/10.1186/s12711-018-0439-1 |
Ejemplares similares
-
Genome-wide prediction using Bayesian additive regression trees
por: Waldmann, Patrik
Publicado: (2016) -
Sparse Convolutional Neural Networks for Genome-Wide Prediction
por: Waldmann, Patrik, et al.
Publicado: (2020) -
Approximation methods for efficient learning of Bayesian networks
por: Riggelsen, C
Publicado: (2008) -
An approximate Bayesian significance test for genomic evaluations
por: Wittenburg, Dörte, et al.
Publicado: (2018) -
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013)