Cargando…
Ras-ERK1/2 signaling contributes to the development of colorectal cancer via regulating H3K9ac
BACKGROUNDS/AIMS: Ras is a control switch of ERK1/2 pathway, and hyperactivation of Ras-ERK1/2 signaling appears frequently in human cancers. However, the molecular regulation following by Ras-ERK1/2 activation is still unclear. This work aimed to reveal whether Ras-ERK1/2 promoted the development o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303919/ https://www.ncbi.nlm.nih.gov/pubmed/30577849 http://dx.doi.org/10.1186/s12885-018-5199-3 |
Sumario: | BACKGROUNDS/AIMS: Ras is a control switch of ERK1/2 pathway, and hyperactivation of Ras-ERK1/2 signaling appears frequently in human cancers. However, the molecular regulation following by Ras-ERK1/2 activation is still unclear. This work aimed to reveal whether Ras-ERK1/2 promoted the development of colorectal cancer via regulating H3K9ac. METHODS: A vector for expression of K-Ras mutated at G12 V and T35S was transfected into SW48 cells, and the acetylation of H3K9 was measured by Western blot analysis. MTT assay, colony formation assay, transwell assay, chromatin immunoprecipitation and RT-qPCR were performed to detect whether H3K9ac was contributed to K-Ras-mediated cell growth and migration. Furthermore, whether HDAC2 and PCAF involved in modification of H3K9ac following Ras-ERK1/2 activation were studied. RESULTS: K-Ras mutated at G12 V and T35S induced a significant activation of ERK1/2 signaling and a significant down-regulation of H3K9ac. Recovering H3K9 acetylation by using a mimicked H3K9ac expression vector attenuated the promoting effects of Ras-ERK1/2 on tumor cells growth and migration. Besides, H3K9ac can be deacetylated by HDAC2 and MDM2-depedent degradation of PCAF. CONCLUSION: H3K9ac was a specific target for Ras-ERK1/2 signaling pathway. H3K9 acetylation can be modulated by HDAC2 and MDM2-depedent degradation of PCAF. The revealed regulation provides a better understanding of Ras-ERK1/2 signaling in tumorigenesis. |
---|