Cargando…
Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153
BACKGROUND: Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303956/ https://www.ncbi.nlm.nih.gov/pubmed/30579328 http://dx.doi.org/10.1186/s12871-018-0660-z |
Sumario: | BACKGROUND: Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells. METHODS: PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored. RESULTS: Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol. CONCLUSION: Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation. |
---|