Cargando…
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
BACKGROUND: Observational studies of medical interventions or risk factors are potentially biased by unmeasured confounding. In this paper we propose a Bayesian approach by defining an informative prior for the confounder-outcome relation, to reduce bias due to unmeasured confounding. This approach...
Autores principales: | Groenwold, Rolf H. H., Shofty, Inbal, Miočević, Milica, van Smeden, Maarten, Klugkist, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303957/ https://www.ncbi.nlm.nih.gov/pubmed/30577773 http://dx.doi.org/10.1186/s12874-018-0634-3 |
Ejemplares similares
-
A weighting method for simultaneous adjustment for confounding and joint exposure-outcome misclassifications
por: Penning de Vries, Bas BL, et al.
Publicado: (2020) -
Quantitative bias analysis in practice: review of software for regression with unmeasured confounding
por: Kawabata, Emily, et al.
Publicado: (2023) -
Performance of the high-dimensional propensity score in adjusting for unmeasured confounders
por: Guertin, Jason R, et al.
Publicado: (2016) -
Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a methodological review
por: Streeter, Adam J., et al.
Publicado: (2017) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019)