Cargando…

Novel SN38 derivative-based liposome as anticancer prodrug: an in vitro and in vivo study

BACKGROUND: Many novel drug delivery systems have been extensively studied to exploit the full therapeutic potential of SN38, which is one of the most potent antitumor analogs of camptothecins (CPTs), whose clinical application is seriously hindered by poor water solubility, low plasmatic stability,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Chan, Zhang, Yang, Yang, Daoqiu, Zhang, Jinfeng, Ma, Juanjuan, Cheng, Dan, Chen, Jianming, Deng, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304248/
https://www.ncbi.nlm.nih.gov/pubmed/30587986
http://dx.doi.org/10.2147/IJN.S187906
Descripción
Sumario:BACKGROUND: Many novel drug delivery systems have been extensively studied to exploit the full therapeutic potential of SN38, which is one of the most potent antitumor analogs of camptothecins (CPTs), whose clinical application is seriously hindered by poor water solubility, low plasmatic stability, and severe toxicity, but results are always unsatisfactory. METHODS: In this study, combining the advantages of prodrug and nanotechnology, a lipophilic prodrug of SN38, SN38-PA, was developed by conjugating palmitic acid to SN38 via ester bond at C(10) position, and then the lipophilic prodrug was encapsulated into a long-circulating liposomal carrier by film dispersion method. RESULTS: The SN38-PA liposomes were characterized as follows: an average particle size of 80.13 nm, an average zeta potential of −33.53 mv, and the entrapment efficiency of 99%. Compared with CPT-11, SN38-PA liposome was more stable in close lactone form, more efficient in conversion rate to SN38, and more potent in cytotoxicity against tumor cells. Pharmacokinetic study showed that SN38-PA liposome had significantly enhanced plasma half-life (t(1/2)) value of SN38 and increased area under the curve (AUC) of SN38, which was 7.5-fold higher than that of CPT-11. Biodistribution study showed that SN38-PA liposome had more active metabolite SN38 in each tissue. Finally, the pharmacodynamic study showed that SN38-PA liposome had higher antitumor effect with the antitumor inhibition rate of 1.61 times than that of CPT-11. CONCLUSION: These encouraging data merit further investigation on this novel SN38-PA liposome.