Cargando…

Antigenic evolution of H3N2 influenza A viruses in swine in the United States from 2012 to 2016

BACKGROUND: Six amino acid positions (145, 155, 156, 158, 159, and 189, referred to as the antigenic motif; H3 numbering) in the globular head region of hemagglutinin (HA1 domain) play an important role in defining the antigenic phenotype of swine Clade IV (C‐IV) H3N2 IAV, containing an H3 from a la...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolton, Marcus J., Abente, Eugenio J., Venkatesh, Divya, Stratton, Jered A., Zeller, Michael, Anderson, Tavis K., Lewis, Nicola S., Vincent, Amy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304321/
https://www.ncbi.nlm.nih.gov/pubmed/30216671
http://dx.doi.org/10.1111/irv.12610
Descripción
Sumario:BACKGROUND: Six amino acid positions (145, 155, 156, 158, 159, and 189, referred to as the antigenic motif; H3 numbering) in the globular head region of hemagglutinin (HA1 domain) play an important role in defining the antigenic phenotype of swine Clade IV (C‐IV) H3N2 IAV, containing an H3 from a late 1990s human‐to‐swine introduction. We hypothesized that antigenicity of a swine C‐IV H3 virus could be inferred based upon the antigenic motif if it matched a previously characterized antigen with the same motif. An increasing number of C‐IV H3 genes encoding antigenic motifs that had not been previously characterized were observed in the U.S. pig population between 2012 and 2016. OBJECTIVES: A broad panel of contemporary H3 viruses with uncharacterized antigenic motifs was selected across multiple clades within C‐IV to assess the impact of HA1 genetic diversity on the antigenic phenotype. METHODS: Hemagglutination inhibition (HI) assays were performed with isolates selected based on antigenic motif, tested against a panel of swine antisera, and visualized by antigenic cartography. RESULTS: A previously uncharacterized motif with low but sustained circulation in the swine population demonstrated a distinct phenotype from those previously characterized. Antigenic variation increased for viruses with similar antigenic motifs, likely due to amino acid substitutions outside the motif. CONCLUSIONS: Although antigenic motifs were largely associated with antigenic distances, substantial diversity among co‐circulating viruses poses a significant challenge for effective vaccine development. Continued surveillance and antigenic characterization of circulating strains is critical for improving vaccine efforts to control C‐IV H3 IAV in U.S. swine.