Cargando…
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion
Drug-target interactions play an important role for biomedical drug discovery and development. However, it is expensive and time-consuming to accomplish this task by experimental determination. Therefore, developing computational techniques for drug-target interaction prediction is urgent and has pr...
Autores principales: | Wang, Minhui, Tang, Chang, Chen, Jiajia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304580/ https://www.ncbi.nlm.nih.gov/pubmed/30627536 http://dx.doi.org/10.1155/2018/1425608 |
Ejemplares similares
-
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization
por: Wang, Aizhen, et al.
Publicado: (2021) -
Applications of combinatorial matrix theory to Laplacian matrices of graphs
por: Molitierno, Jason J
Publicado: (2012) -
Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion
por: Wang, Mei-Neng, et al.
Publicado: (2023) -
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
por: Shang, Yilun
Publicado: (2015) -
Graph regularized non-negative matrix factorization with [Formula: see text] norm regularization terms for drug–target interactions prediction
por: Zhang, Junjun, et al.
Publicado: (2023)