Cargando…

Left ventricular dysfunction after two hours of polarizing or depolarizing cardioplegic arrest in a porcine model

INTRODUCTION: This experimental study compares myocardial function after prolonged arrest by St. Thomas’ Hospital polarizing cardioplegic solution (esmolol, adenosine, Mg(2+)) with depolarizing (hyperkalaemic) St. Thomas’ Hospital No 2, both administered as cold oxygenated blood cardioplegia. METHOD...

Descripción completa

Detalles Bibliográficos
Autores principales: Aass, Terje, Stangeland, Lodve, Moen, Christian Arvei, Solholm, Atle, Dahle, Geir Olav, Chambers, David J., Urban, Malte, Nesheim, Knut, Haaverstad, Rune, Matre, Knut, Grong, Ketil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304685/
https://www.ncbi.nlm.nih.gov/pubmed/30058944
http://dx.doi.org/10.1177/0267659118791357
Descripción
Sumario:INTRODUCTION: This experimental study compares myocardial function after prolonged arrest by St. Thomas’ Hospital polarizing cardioplegic solution (esmolol, adenosine, Mg(2+)) with depolarizing (hyperkalaemic) St. Thomas’ Hospital No 2, both administered as cold oxygenated blood cardioplegia. METHODS: Twenty anaesthetized pigs on tepid (34°C) cardiopulmonary bypass (CPB) were randomised to cardioplegic arrest for 120 min with antegrade, repeated, cold, oxygenated, polarizing (STH-POL) or depolarizing (STH-2) blood cardioplegia every 20 min. Cardiac function was evaluated at Baseline and 60, 150 and 240 min after weaning from CPB, using a pressure-conductance catheter and epicardial echocardiography. Regional tissue blood flow, cleaved caspase-3 activity and levels of malondialdehyde were evaluated in myocardial tissue samples. RESULTS: Preload recruitable stroke work (PRSW) was increased after polarizing compared to depolarizing cardioplegia 150 min after declamping (73.0±3.2 vs. 64.3±2.4 mmHg, p=0.047). Myocardial tissue blood flow rate was high in both groups compared to the Baseline levels and decreased significantly in the STH-POL group only, from 60 min to 150 min after declamping (p<0.005). Blood flow was significantly reduced in the STH-POL compared to the STH-2 group 240 min after declamping (p<0.05). Left ventricular mechanical efficiency, the ratio between total pressure-volume area and blood flow rate, gradually decreased after STH-2 cardioplegia and was significantly reduced compared to STH-POL cardioplegia after 150 and 240 min (p<0.05 for both). CONCLUSION: Myocardial protection for two hours of polarizing cardioplegic arrest with STH-POL in oxygenated blood is non-inferior compared to STH-2 blood cardioplegia. STH-POL cardioplegia alleviates the mismatch between myocardial function and perfusion after weaning from CPB