Cargando…

Bioinformatic and Metabolomic Analysis Reveal Intervention Effects of Chicory in a Quail Model of Hyperuricemia

Background. Hyperuricemia (HUA) is a kind of a metabolic disease that seriously threatens human health worldwide. Chicory, a natural herbal medicine, has an obvious effect of reducing uric acid. The aim of this study is to explore the potential components and pharmacological pathways that may play a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bian, Meng, Lin, Zhijian, Wang, Yu, Zhang, Bing, Li, Gaoxi, Wang, Haige
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304835/
https://www.ncbi.nlm.nih.gov/pubmed/30622605
http://dx.doi.org/10.1155/2018/5730385
Descripción
Sumario:Background. Hyperuricemia (HUA) is a kind of a metabolic disease that seriously threatens human health worldwide. Chicory, a natural herbal medicine, has an obvious effect of reducing uric acid. The aim of this study is to explore the potential components and pharmacological pathways that may play a role in hypouricemia activity of chicory. Bioinformatics and metabonomics were applied to this research. Firstly, component-target network was used to identify possible components related to the pharmacological properties and their corresponding mechanisms pathway of chicory. Afterwards, animal pharmacodynamic experiments were performed. Blood and stool samples were collected for untargeted metabolomic analysis by dint of UHPLC-Q-TOF/MS methods, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were performed for the pattern recognition and characteristic metabolites identification. Significant enriched function pathways were used in bioinformatics suggesting that chicory might have the effect of regulation of lipolysis in adipocytes. PLS-DA analysis was applied to discover differentiating metabolites, and pathway enrichment analysis indicated that chicory had powerful effects of glycosylphosphatidylinositol- (GPI-) anchor biosynthesis, inositol phosphate metabolism, glycerophospholipid metabolism, and steroid hormone biosynthesis. Combining bioinformatics and metabolomics results, we consider that chicory may develop on lowering uric acid by adjusting lipid metabolism. In addition, we chose quail as animal model innovatively and discussed the treatment of hyperuricemia with chicory in multiple methods, which may render reference for the research of HUA.