Cargando…
Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue
West Nile virus (WNV), a small, positive sense, single stranded RNA virus continues to encroach into new locales with emergence of new viral variants. Neurological disease in the equine can be moderate to severe in the face of low to undetectable virus loads. Physical methods of virus enrichment may...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305279/ https://www.ncbi.nlm.nih.gov/pubmed/30619900 http://dx.doi.org/10.3389/fvets.2018.00318 |
_version_ | 1783382526983667712 |
---|---|
author | Prakoso, Dhani Dark, Michael J. Barbet, Anthony F. Salemi, Marco Barr, Kelli L. Liu, Junjie J. Wenzlow, Nanny Waltzek, Thomas B. Long, Maureen T. |
author_facet | Prakoso, Dhani Dark, Michael J. Barbet, Anthony F. Salemi, Marco Barr, Kelli L. Liu, Junjie J. Wenzlow, Nanny Waltzek, Thomas B. Long, Maureen T. |
author_sort | Prakoso, Dhani |
collection | PubMed |
description | West Nile virus (WNV), a small, positive sense, single stranded RNA virus continues to encroach into new locales with emergence of new viral variants. Neurological disease in the equine can be moderate to severe in the face of low to undetectable virus loads. Physical methods of virus enrichment may increase sensitivity of virus detection and enhance analysis of viral diversity, especially for deep sequencing studies. However, the use of these techniques is limited mainly to non-neural tissues. We investigated the hypothesis that elimination of equine brain RNA enhances viral detection without limiting viral variation. Eight different WNV viral RNA enrichment and host RNA separation methods were evaluated to determine if elimination of host RNA enhanced detection of WNV and increase the repertoire of virus variants for sequencing. Archived brain tissue from 21 different horses was inoculated with WNV, homogenized, before enrichment and separation. The protocols utilized combinations of low-speed centrifugation, syringe filtration, and nuclease treatment. Viral and host RNA were analyzed using real-time PCR targeting the WNV Envelope (E) protein and equine G3PDH to determine relative sensitivity for WNV and host depletion, respectively. To determine the effect of these methods on viral variation, deep sequencing of the E protein was performed. Our results demonstrate that additional separation and enrichment methods resulted in loss of virus in the face of host RNA depletion. DNA sequencing showed no significant difference in total sequence variation between the RNA enrichment protocols. For equine brain infected with WNV, direct RNA extraction followed by host RNA depletion was most suitable. This study highlights the importance of evaluating viral enrichment and separation methods according to tissue type before embarking on studies where quantification of virus and viral variants is essential to the outcome of the study. |
format | Online Article Text |
id | pubmed-6305279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63052792019-01-07 Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue Prakoso, Dhani Dark, Michael J. Barbet, Anthony F. Salemi, Marco Barr, Kelli L. Liu, Junjie J. Wenzlow, Nanny Waltzek, Thomas B. Long, Maureen T. Front Vet Sci Veterinary Science West Nile virus (WNV), a small, positive sense, single stranded RNA virus continues to encroach into new locales with emergence of new viral variants. Neurological disease in the equine can be moderate to severe in the face of low to undetectable virus loads. Physical methods of virus enrichment may increase sensitivity of virus detection and enhance analysis of viral diversity, especially for deep sequencing studies. However, the use of these techniques is limited mainly to non-neural tissues. We investigated the hypothesis that elimination of equine brain RNA enhances viral detection without limiting viral variation. Eight different WNV viral RNA enrichment and host RNA separation methods were evaluated to determine if elimination of host RNA enhanced detection of WNV and increase the repertoire of virus variants for sequencing. Archived brain tissue from 21 different horses was inoculated with WNV, homogenized, before enrichment and separation. The protocols utilized combinations of low-speed centrifugation, syringe filtration, and nuclease treatment. Viral and host RNA were analyzed using real-time PCR targeting the WNV Envelope (E) protein and equine G3PDH to determine relative sensitivity for WNV and host depletion, respectively. To determine the effect of these methods on viral variation, deep sequencing of the E protein was performed. Our results demonstrate that additional separation and enrichment methods resulted in loss of virus in the face of host RNA depletion. DNA sequencing showed no significant difference in total sequence variation between the RNA enrichment protocols. For equine brain infected with WNV, direct RNA extraction followed by host RNA depletion was most suitable. This study highlights the importance of evaluating viral enrichment and separation methods according to tissue type before embarking on studies where quantification of virus and viral variants is essential to the outcome of the study. Frontiers Media S.A. 2018-12-18 /pmc/articles/PMC6305279/ /pubmed/30619900 http://dx.doi.org/10.3389/fvets.2018.00318 Text en Copyright © 2018 Prakoso, Dark, Barbet, Salemi, Barr, Liu, Wenzlow, Waltzek and Long. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Veterinary Science Prakoso, Dhani Dark, Michael J. Barbet, Anthony F. Salemi, Marco Barr, Kelli L. Liu, Junjie J. Wenzlow, Nanny Waltzek, Thomas B. Long, Maureen T. Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title | Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title_full | Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title_fullStr | Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title_full_unstemmed | Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title_short | Viral Enrichment Methods Affect the Detection but Not Sequence Variation of West Nile Virus in Equine Brain Tissue |
title_sort | viral enrichment methods affect the detection but not sequence variation of west nile virus in equine brain tissue |
topic | Veterinary Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305279/ https://www.ncbi.nlm.nih.gov/pubmed/30619900 http://dx.doi.org/10.3389/fvets.2018.00318 |
work_keys_str_mv | AT prakosodhani viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT darkmichaelj viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT barbetanthonyf viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT salemimarco viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT barrkellil viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT liujunjiej viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT wenzlownanny viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT waltzekthomasb viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue AT longmaureent viralenrichmentmethodsaffectthedetectionbutnotsequencevariationofwestnilevirusinequinebraintissue |