Cargando…
Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets
Weaned piglets are vulnerable to nutritional, physiological, and psychological stressors, leading to abrupt taxonomic and functional shifts in the intestinal microbiome. In this study, an integrated approach combination of 16S rDNA gene sequencing and the mass spectrometry-based metabolomics techniq...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305375/ https://www.ncbi.nlm.nih.gov/pubmed/30584255 http://dx.doi.org/10.1038/s41598-018-33649-8 |
_version_ | 1783382549567897600 |
---|---|
author | Li, Yuan Guo, Yong Wen, Zhengshun Jiang, Xuemei Ma, Xin Han, Xinyan |
author_facet | Li, Yuan Guo, Yong Wen, Zhengshun Jiang, Xuemei Ma, Xin Han, Xinyan |
author_sort | Li, Yuan |
collection | PubMed |
description | Weaned piglets are vulnerable to nutritional, physiological, and psychological stressors, leading to abrupt taxonomic and functional shifts in the intestinal microbiome. In this study, an integrated approach combination of 16S rDNA gene sequencing and the mass spectrometry-based metabolomics techniques was used to investigate the effects of weaning stress on intestinal microbial composition and its metabolic profiles of piglets. Three litters of suckling piglets with same parity were chosen. The samples of colonic contents were collected from each selected piglets (weaned day, 3 days after weaned) for microbial and metabolomics analysis. The results showed that Lachnospiraceae, Negativicutes, Selenomonadales, Campylobacterales and other 15 species increased after weaning, while Porphyromonadaceace, Alloprevotella, Barnesiella and Oscillibacter decreased. Based on the function profiles prediction and metabolomic analysis, five key metabolic pathways including Phenylalanine metabolism, Citrate cycle (TCA cycle), Glycolysis or Gluconeogenesis, Propanoate metabolism, Nicotinate and nicotinamide metabolism might be the relevant pathways involved in weaning stress-induced gut microbiota dysbiosis. Taken together, these results indicated that weaning stress not only changed microbial composition and function but altered the microbial metabolic profiles in the intestine, which might provide a new insight in alleviating weaning stress and facilitating disease prevention during the period of weaning in piglets. |
format | Online Article Text |
id | pubmed-6305375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63053752018-12-31 Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets Li, Yuan Guo, Yong Wen, Zhengshun Jiang, Xuemei Ma, Xin Han, Xinyan Sci Rep Article Weaned piglets are vulnerable to nutritional, physiological, and psychological stressors, leading to abrupt taxonomic and functional shifts in the intestinal microbiome. In this study, an integrated approach combination of 16S rDNA gene sequencing and the mass spectrometry-based metabolomics techniques was used to investigate the effects of weaning stress on intestinal microbial composition and its metabolic profiles of piglets. Three litters of suckling piglets with same parity were chosen. The samples of colonic contents were collected from each selected piglets (weaned day, 3 days after weaned) for microbial and metabolomics analysis. The results showed that Lachnospiraceae, Negativicutes, Selenomonadales, Campylobacterales and other 15 species increased after weaning, while Porphyromonadaceace, Alloprevotella, Barnesiella and Oscillibacter decreased. Based on the function profiles prediction and metabolomic analysis, five key metabolic pathways including Phenylalanine metabolism, Citrate cycle (TCA cycle), Glycolysis or Gluconeogenesis, Propanoate metabolism, Nicotinate and nicotinamide metabolism might be the relevant pathways involved in weaning stress-induced gut microbiota dysbiosis. Taken together, these results indicated that weaning stress not only changed microbial composition and function but altered the microbial metabolic profiles in the intestine, which might provide a new insight in alleviating weaning stress and facilitating disease prevention during the period of weaning in piglets. Nature Publishing Group UK 2018-12-24 /pmc/articles/PMC6305375/ /pubmed/30584255 http://dx.doi.org/10.1038/s41598-018-33649-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Yuan Guo, Yong Wen, Zhengshun Jiang, Xuemei Ma, Xin Han, Xinyan Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title | Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title_full | Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title_fullStr | Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title_full_unstemmed | Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title_short | Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets |
title_sort | weaning stress perturbs gut microbiome and its metabolic profile in piglets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305375/ https://www.ncbi.nlm.nih.gov/pubmed/30584255 http://dx.doi.org/10.1038/s41598-018-33649-8 |
work_keys_str_mv | AT liyuan weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets AT guoyong weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets AT wenzhengshun weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets AT jiangxuemei weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets AT maxin weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets AT hanxinyan weaningstressperturbsgutmicrobiomeanditsmetabolicprofileinpiglets |