Cargando…
OATP1B3 (699G>A) and CYP2C9*2, *3 significantly influenced the transport and metabolism of glibenclamide and glipizide
Glibenclamide and glipizide show large substantial inter-individual variation in clinical efficacy, which may be resulted from the genetic differences of metabolic enzymes and transporters in individuals. This study purposed to investigate the effect of OATP1B3 and CYP2C9 genetic polymorphisms on th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305483/ https://www.ncbi.nlm.nih.gov/pubmed/30584236 http://dx.doi.org/10.1038/s41598-018-36212-7 |
Sumario: | Glibenclamide and glipizide show large substantial inter-individual variation in clinical efficacy, which may be resulted from the genetic differences of metabolic enzymes and transporters in individuals. This study purposed to investigate the effect of OATP1B3 and CYP2C9 genetic polymorphisms on the transport and metabolism of glibenclamide and glipizide in human. An LC-MS method was used to determine the uptake of glibenclamide and glipizide in OATP1B3, OATP1B3 (344T > G) and OATP1B3 (699G > A)-HEK293T cells and their metabolism in CYP2C9*1, *2 and *3 recombinase system. Glibenclamide can be taken in OATP1B3 (wild-type), OATP1B3 (344T > G) and OATP1B3 (699G > A)-HEK293T cells with the V(max) values of 44.91 ± 7.97, 46.08 ± 8.69, and 37.31 ± 5.04 pmol/min/mg, while glipizide was taken in with V(max) of 16.50 ± 3.64, 16.87 ± 4.23, and 13.42 ± 2.79 pmol/min/mg, respectively. The internal clearance of glibenclamide and glipizide in OATP1B3 (699G > A) was less than that in wild-type. Glibenclamide can be metabolized in CYP2C9*1, *2 and *3 recombinase system with the V(max) values of 1.58 ± 0.71, 0.69 ± 0.25, and 0.41 ± 0.13 nmol/min/mg protein, while glipizide was metabolized with V(max) of 8.82 ± 2.78, 5.99 ± 1.95, and 2.87 ± 1.03 nmol/min/mg protein, respectively. The internal clearance of glibenclamide and glipizide in CYP2C9*2 and *3 was markedly reduced compared to that in CYP2C9*1. These results collectively demonstrate that OATP1B3 (699G > A) and CYP2C9*2 and *3 have a significant influence on the transport and metabolism of glibenclamide and glipizide. |
---|