Cargando…
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification
High-order correlation has recently been proposed to model brain functional connectivity network (FCN) for identifying neurological disorders, such as mild cognitive impairment (MCI) and autism spectrum disorder (ASD). In practice, the high-order FCN (HoFCN) can be derived from multiple low-order FC...
Autores principales: | Zhou, Yueying, Zhang, Limei, Teng, Shenghua, Qiao, Lishan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305547/ https://www.ncbi.nlm.nih.gov/pubmed/30618582 http://dx.doi.org/10.3389/fnins.2018.00959 |
Ejemplares similares
-
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
por: Chen, Huihui, et al.
Publicado: (2021) -
Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment
por: Zhou, Yueying, et al.
Publicado: (2018) -
Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2020) -
Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2021) -
Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification
por: Jiang, Xiao, et al.
Publicado: (2022)