Cargando…

Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

BACKGROUND: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observation...

Descripción completa

Detalles Bibliográficos
Autores principales: Mebazaa, Alexandre, Geven, Christopher, Hollinger, Alexa, Wittebole, Xavier, Chousterman, Benjamin Glen, Blet, Alice, Gayat, Etienne, Hartmann, Oliver, Scigalla, Paul, Struck, Joachim, Bergmann, Andreas, Antonelli, Massimo, Beishuizen, Albertus, Constantin, Jean-Michel, Damoisel, Charles, Deye, Nicolas, Di Somma, Salvatore, Dugernier, Thierry, François, Bruno, Gaudry, Stephane, Huberlant, Vincent, Lascarrou, Jean-Baptiste, Marx, Gernot, Mercier, Emmanuelle, Oueslati, Haikel, Pickkers, Peter, Sonneville, Romain, Legrand, Matthieu, Laterre, Pierre-François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305573/
https://www.ncbi.nlm.nih.gov/pubmed/30583748
http://dx.doi.org/10.1186/s13054-018-2243-2
Descripción
Sumario:BACKGROUND: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. METHODS: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. RESULTS: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5–148.1 pg/ml]. Initial SOFA score was 7 [IQR 5–10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9–2.9]; adjusted HR 1.6 [CI 1.1–2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5–9.8). CONCLUSIONS: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-018-2243-2) contains supplementary material, which is available to authorized users.