Cargando…
Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints
BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The di...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pasteur Institute
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305813/ https://www.ncbi.nlm.nih.gov/pubmed/29523019 http://dx.doi.org/10.29252/.22.6.374 |
_version_ | 1783382649437421568 |
---|---|
author | Majd, Tahereh Mohammadi Kalantari, Shiva Shahraki, Hadi Raeisi Nafar, Mohsen Almasi, Afshin Samavat, Shiva Parvin, Mahmoud Hashemian, Amirhossein |
author_facet | Majd, Tahereh Mohammadi Kalantari, Shiva Shahraki, Hadi Raeisi Nafar, Mohsen Almasi, Afshin Samavat, Shiva Parvin, Mahmoud Hashemian, Amirhossein |
author_sort | Majd, Tahereh Mohammadi |
collection | PubMed |
description | BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The discovery of potential and reliable urinary biomarkers for diagnosis of IgAN depends on applying robust and suitable models. Applying two multivariate modeling methods on a urine proteomic dataset were obtained from IgAN patients, and comparison of the results of these methods were the purpose of this study. METHODS: Two models were constructed for urinary protein profiles of 13 patients and 8 healthy individuals, based on sparse linear discriminant analysis (SLDA) and elastic net (EN) regression methods. A panel of selected biomarkers with the best coefficients were proposed and further analyzed for biological relevance using functional annotation and pathway analysis. RESULTS: Transferrin, α1-antitrypsin, and albumin fragments were the most important up-regulated biomarkers, while fibulin-5, YIP1 family member 3, prasoposin, and osteopontin were the most important down-regulated biomarkers. Pathway analysis revealed that complement and coagulation cascades and extracellular matrix-receptor interaction pathways impaired in the pathogenesis of IgAN. CONCLUSION: SLDA and EN had an equal importance for diagnosis of IgAN and were useful methods for exploring and processing proteomic data. In addition, the suggested biomarkers are reliable candidates for further validation to non-invasive diagnose of IgAN based on urine examination. |
format | Online Article Text |
id | pubmed-6305813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Pasteur Institute |
record_format | MEDLINE/PubMed |
spelling | pubmed-63058132019-01-09 Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints Majd, Tahereh Mohammadi Kalantari, Shiva Shahraki, Hadi Raeisi Nafar, Mohsen Almasi, Afshin Samavat, Shiva Parvin, Mahmoud Hashemian, Amirhossein Iran Biomed J Full Length BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The discovery of potential and reliable urinary biomarkers for diagnosis of IgAN depends on applying robust and suitable models. Applying two multivariate modeling methods on a urine proteomic dataset were obtained from IgAN patients, and comparison of the results of these methods were the purpose of this study. METHODS: Two models were constructed for urinary protein profiles of 13 patients and 8 healthy individuals, based on sparse linear discriminant analysis (SLDA) and elastic net (EN) regression methods. A panel of selected biomarkers with the best coefficients were proposed and further analyzed for biological relevance using functional annotation and pathway analysis. RESULTS: Transferrin, α1-antitrypsin, and albumin fragments were the most important up-regulated biomarkers, while fibulin-5, YIP1 family member 3, prasoposin, and osteopontin were the most important down-regulated biomarkers. Pathway analysis revealed that complement and coagulation cascades and extracellular matrix-receptor interaction pathways impaired in the pathogenesis of IgAN. CONCLUSION: SLDA and EN had an equal importance for diagnosis of IgAN and were useful methods for exploring and processing proteomic data. In addition, the suggested biomarkers are reliable candidates for further validation to non-invasive diagnose of IgAN based on urine examination. Pasteur Institute 2018-11 /pmc/articles/PMC6305813/ /pubmed/29523019 http://dx.doi.org/10.29252/.22.6.374 Text en Copyright: © Iranian Biomedical Journal http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Length Majd, Tahereh Mohammadi Kalantari, Shiva Shahraki, Hadi Raeisi Nafar, Mohsen Almasi, Afshin Samavat, Shiva Parvin, Mahmoud Hashemian, Amirhossein Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title | Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title_full | Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title_fullStr | Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title_full_unstemmed | Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title_short | Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints |
title_sort | application of sparse linear discriminant analysis and elastic net for diagnosis of iga nephropathy: statistical and biological viewpoints |
topic | Full Length |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305813/ https://www.ncbi.nlm.nih.gov/pubmed/29523019 http://dx.doi.org/10.29252/.22.6.374 |
work_keys_str_mv | AT majdtaherehmohammadi applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT kalantarishiva applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT shahrakihadiraeisi applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT nafarmohsen applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT almasiafshin applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT samavatshiva applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT parvinmahmoud applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints AT hashemianamirhossein applicationofsparselineardiscriminantanalysisandelasticnetfordiagnosisofiganephropathystatisticalandbiologicalviewpoints |