Cargando…
Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques for Behavioral Changes Detection: A Case Series of the Evidence-Based Behavior (eB(2)) Study
BACKGROUND: The emergence of smartphones, wearable sensor technologies, and smart homes allows the nonintrusive collection of activity data. Thus, health-related events, such as activities of daily living (ADLs; eg, mobility patterns, feeding, sleeping, ...) can be captured without patients’ active...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305880/ https://www.ncbi.nlm.nih.gov/pubmed/30530465 http://dx.doi.org/10.2196/mhealth.9472 |