Cargando…
Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques for Behavioral Changes Detection: A Case Series of the Evidence-Based Behavior (eB(2)) Study
BACKGROUND: The emergence of smartphones, wearable sensor technologies, and smart homes allows the nonintrusive collection of activity data. Thus, health-related events, such as activities of daily living (ADLs; eg, mobility patterns, feeding, sleeping, ...) can be captured without patients’ active...
Autores principales: | Berrouiguet, Sofian, Ramírez, David, Barrigón, María Luisa, Moreno-Muñoz, Pablo, Carmona Camacho, Rodrigo, Baca-García, Enrique, Artés-Rodríguez, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305880/ https://www.ncbi.nlm.nih.gov/pubmed/30530465 http://dx.doi.org/10.2196/mhealth.9472 |
Ejemplares similares
-
Smartphone-based Ecological Momentary Intervention for secondary prevention of suicidal thoughts and behaviour: protocol for the SmartCrisis V.2.0 randomised clinical trial
por: Barrigon, Maria Luisa, et al.
Publicado: (2022) -
Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol
por: Berrouiguet, Sofian, et al.
Publicado: (2019) -
Psychiatric Profiles of eHealth Users Evaluated Using Data Mining Techniques: Cohort Study
por: Lopez-Castroman, Jorge, et al.
Publicado: (2021) -
An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support
por: Berrouiguet, Sofian, et al.
Publicado: (2019) -
Use of Ecological Momentary Assessment Through a Passive Smartphone-Based App (eB2) by Patients With Schizophrenia: Acceptability Study
por: Lopez-Morinigo, Javier-David, et al.
Publicado: (2021)