Cargando…
Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data
Computational neuroscience relies on simulations of neural network models to bridge the gap between the theory of neural networks and the experimentally observed activity dynamics in the brain. The rigorous validation of simulation results against reference data is thus an indispensable part of any...
Autores principales: | Gutzen, Robin, von Papen, Michael, Trensch, Guido, Quaglio, Pietro, Grün, Sonja, Denker, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305903/ https://www.ncbi.nlm.nih.gov/pubmed/30618696 http://dx.doi.org/10.3389/fninf.2018.00090 |
Ejemplares similares
-
Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data
por: Trensch, Guido, et al.
Publicado: (2018) -
A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks
por: Trensch, Guido, et al.
Publicado: (2022) -
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining
por: Torre, Emiliano, et al.
Publicado: (2013) -
Simulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer
por: Heittmann, Arne, et al.
Publicado: (2022) -
Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE
por: Quaglio, Pietro, et al.
Publicado: (2017)