Cargando…
Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction
Phytotoxic potential of rosmarinic acid (RA), a caffeic acid ester largely found in aromatic species, was evaluated on Arabidopsis through metabolomic and microscopic approaches. In-vitro bioassays pointed out that RA affected root growth and morphology, causing ROS burst, ROS scavengers activity in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306208/ https://www.ncbi.nlm.nih.gov/pubmed/30586368 http://dx.doi.org/10.1371/journal.pone.0208802 |
_version_ | 1783382730284728320 |
---|---|
author | Araniti, Fabrizio Costas-Gil, Aitana Cabeiras-Freijanes, Luz Lupini, Antonio Sunseri, Francesco Reigosa, Manuel J. Abenavoli, Maria Rosa Sánchez-Moreiras, Adela M. |
author_facet | Araniti, Fabrizio Costas-Gil, Aitana Cabeiras-Freijanes, Luz Lupini, Antonio Sunseri, Francesco Reigosa, Manuel J. Abenavoli, Maria Rosa Sánchez-Moreiras, Adela M. |
author_sort | Araniti, Fabrizio |
collection | PubMed |
description | Phytotoxic potential of rosmarinic acid (RA), a caffeic acid ester largely found in aromatic species, was evaluated on Arabidopsis through metabolomic and microscopic approaches. In-vitro bioassays pointed out that RA affected root growth and morphology, causing ROS burst, ROS scavengers activity inhibition and consequently, an alteration on cells organization and ultrastructure. In particular, RA-treatment (175 μM) caused strong vacuolization, alteration of mitochondria structure and function and a consistent ROS-induced reduction of their transmembrane potential (ΔΨ(m)). These data suggested a cell energy deficit also confirmed by the metabolomic analysis, which highlighted a strong alteration of both TCA cycle and amino acids metabolism. Moreover, the increase in H(2)O(2) and O(2)(−) contents suggested that RA-treated meristems underwent oxidative stress, resulting in apoptotic bodies and necrotic cells. Taken together, these results suggest that RA inhibits two of the main ROS scavengers causing high ROS accumulation, responsible of the alterations on mitochondrial ultrastructure and activity through ΔΨ(m) dissipation, TCA-cycle alteration, cell starvation and consequently cell death on Arabidopsis seedlings. All these effects resulted in a strong inhibition on root growth and development, which convert RA in a promising molecule to be explored for further use in weed management. |
format | Online Article Text |
id | pubmed-6306208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63062082019-01-08 Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction Araniti, Fabrizio Costas-Gil, Aitana Cabeiras-Freijanes, Luz Lupini, Antonio Sunseri, Francesco Reigosa, Manuel J. Abenavoli, Maria Rosa Sánchez-Moreiras, Adela M. PLoS One Research Article Phytotoxic potential of rosmarinic acid (RA), a caffeic acid ester largely found in aromatic species, was evaluated on Arabidopsis through metabolomic and microscopic approaches. In-vitro bioassays pointed out that RA affected root growth and morphology, causing ROS burst, ROS scavengers activity inhibition and consequently, an alteration on cells organization and ultrastructure. In particular, RA-treatment (175 μM) caused strong vacuolization, alteration of mitochondria structure and function and a consistent ROS-induced reduction of their transmembrane potential (ΔΨ(m)). These data suggested a cell energy deficit also confirmed by the metabolomic analysis, which highlighted a strong alteration of both TCA cycle and amino acids metabolism. Moreover, the increase in H(2)O(2) and O(2)(−) contents suggested that RA-treated meristems underwent oxidative stress, resulting in apoptotic bodies and necrotic cells. Taken together, these results suggest that RA inhibits two of the main ROS scavengers causing high ROS accumulation, responsible of the alterations on mitochondrial ultrastructure and activity through ΔΨ(m) dissipation, TCA-cycle alteration, cell starvation and consequently cell death on Arabidopsis seedlings. All these effects resulted in a strong inhibition on root growth and development, which convert RA in a promising molecule to be explored for further use in weed management. Public Library of Science 2018-12-26 /pmc/articles/PMC6306208/ /pubmed/30586368 http://dx.doi.org/10.1371/journal.pone.0208802 Text en © 2018 Araniti et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Araniti, Fabrizio Costas-Gil, Aitana Cabeiras-Freijanes, Luz Lupini, Antonio Sunseri, Francesco Reigosa, Manuel J. Abenavoli, Maria Rosa Sánchez-Moreiras, Adela M. Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title | Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title_full | Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title_fullStr | Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title_full_unstemmed | Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title_short | Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
title_sort | rosmarinic acid induces programmed cell death in arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306208/ https://www.ncbi.nlm.nih.gov/pubmed/30586368 http://dx.doi.org/10.1371/journal.pone.0208802 |
work_keys_str_mv | AT aranitifabrizio rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT costasgilaitana rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT cabeirasfreijanesluz rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT lupiniantonio rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT sunserifrancesco rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT reigosamanuelj rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT abenavolimariarosa rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction AT sanchezmoreirasadelam rosmarinicacidinducesprogrammedcelldeathinarabidopsisseedlingsthroughreactiveoxygenspeciesandmitochondrialdysfunction |