Cargando…
Deep convolutional networks do not classify based on global object shape
Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306249/ https://www.ncbi.nlm.nih.gov/pubmed/30532273 http://dx.doi.org/10.1371/journal.pcbi.1006613 |
_version_ | 1783382740217888768 |
---|---|
author | Baker, Nicholas Lu, Hongjing Erlikhman, Gennady Kellman, Philip J. |
author_facet | Baker, Nicholas Lu, Hongjing Erlikhman, Gennady Kellman, Philip J. |
author_sort | Baker, Nicholas |
collection | PubMed |
description | Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2–4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object’s bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes. |
format | Online Article Text |
id | pubmed-6306249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63062492019-01-08 Deep convolutional networks do not classify based on global object shape Baker, Nicholas Lu, Hongjing Erlikhman, Gennady Kellman, Philip J. PLoS Comput Biol Research Article Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2–4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object’s bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes. Public Library of Science 2018-12-07 /pmc/articles/PMC6306249/ /pubmed/30532273 http://dx.doi.org/10.1371/journal.pcbi.1006613 Text en © 2018 Baker et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Baker, Nicholas Lu, Hongjing Erlikhman, Gennady Kellman, Philip J. Deep convolutional networks do not classify based on global object shape |
title | Deep convolutional networks do not classify based on global object shape |
title_full | Deep convolutional networks do not classify based on global object shape |
title_fullStr | Deep convolutional networks do not classify based on global object shape |
title_full_unstemmed | Deep convolutional networks do not classify based on global object shape |
title_short | Deep convolutional networks do not classify based on global object shape |
title_sort | deep convolutional networks do not classify based on global object shape |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306249/ https://www.ncbi.nlm.nih.gov/pubmed/30532273 http://dx.doi.org/10.1371/journal.pcbi.1006613 |
work_keys_str_mv | AT bakernicholas deepconvolutionalnetworksdonotclassifybasedonglobalobjectshape AT luhongjing deepconvolutionalnetworksdonotclassifybasedonglobalobjectshape AT erlikhmangennady deepconvolutionalnetworksdonotclassifybasedonglobalobjectshape AT kellmanphilipj deepconvolutionalnetworksdonotclassifybasedonglobalobjectshape |