Cargando…
Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders
Neural stem cell (NSC) grafting in conditions such as aging, brain injury, and neurodegenerative diseases promotes regeneration, plasticity and functional recovery. Recent studies have revealed that administration of NSC-derived extracellular vesicles (NSC-EVs) via non-invasive approaches can also a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306394/ https://www.ncbi.nlm.nih.gov/pubmed/30472088 http://dx.doi.org/10.1016/j.ebiom.2018.11.026 |
_version_ | 1783382771417219072 |
---|---|
author | Vogel, Andrew D. Upadhya, Raghavendra Shetty, Ashok K. |
author_facet | Vogel, Andrew D. Upadhya, Raghavendra Shetty, Ashok K. |
author_sort | Vogel, Andrew D. |
collection | PubMed |
description | Neural stem cell (NSC) grafting in conditions such as aging, brain injury, and neurodegenerative diseases promotes regeneration, plasticity and functional recovery. Recent studies have revealed that administration of NSC-derived extracellular vesicles (NSC-EVs) via non-invasive approaches can also afford therapeutic benefits. This review confers the properties and therapeutic promise of EVs secreted by NSCs. NSC-EVs enriched with specific miRNAs mediate multiple functions in physiological and pathological conditions, which include modulation of the proximate microenvironment, facilitating the entry of viruses into cells, functioning as independent metabolic units, operating as a microglial morphogen and influencing the diverse aspects of brain function in adulthood including the process of aging. Due to their anti-inflammatory, neurogenic and neurotrophic effects, NSC-EVs are also useful for treating multiple neurodegenerative diseases. Although only a few studies have demonstrated the efficacy of NSC-EVs to treat brain impairments, the promise is enormous. Moving forward, the use of well-characterized NSC-EVs generated in specific culture conditions and NSC-EVs that are engineered to carry the desired miRNAs, mRNAs and proteins have great promise for treating brain injury and neurogenerative diseases. Notably, the possibility of targeting NSC-EVs to specific neuronal types or brain regions would enable managing of diverse neurodegenerative conditions with minimal side effects. |
format | Online Article Text |
id | pubmed-6306394 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63063942018-12-28 Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders Vogel, Andrew D. Upadhya, Raghavendra Shetty, Ashok K. eBioMedicine Review Neural stem cell (NSC) grafting in conditions such as aging, brain injury, and neurodegenerative diseases promotes regeneration, plasticity and functional recovery. Recent studies have revealed that administration of NSC-derived extracellular vesicles (NSC-EVs) via non-invasive approaches can also afford therapeutic benefits. This review confers the properties and therapeutic promise of EVs secreted by NSCs. NSC-EVs enriched with specific miRNAs mediate multiple functions in physiological and pathological conditions, which include modulation of the proximate microenvironment, facilitating the entry of viruses into cells, functioning as independent metabolic units, operating as a microglial morphogen and influencing the diverse aspects of brain function in adulthood including the process of aging. Due to their anti-inflammatory, neurogenic and neurotrophic effects, NSC-EVs are also useful for treating multiple neurodegenerative diseases. Although only a few studies have demonstrated the efficacy of NSC-EVs to treat brain impairments, the promise is enormous. Moving forward, the use of well-characterized NSC-EVs generated in specific culture conditions and NSC-EVs that are engineered to carry the desired miRNAs, mRNAs and proteins have great promise for treating brain injury and neurogenerative diseases. Notably, the possibility of targeting NSC-EVs to specific neuronal types or brain regions would enable managing of diverse neurodegenerative conditions with minimal side effects. Elsevier 2018-11-22 /pmc/articles/PMC6306394/ /pubmed/30472088 http://dx.doi.org/10.1016/j.ebiom.2018.11.026 Text en © 2018 Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Vogel, Andrew D. Upadhya, Raghavendra Shetty, Ashok K. Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title | Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title_full | Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title_fullStr | Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title_full_unstemmed | Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title_short | Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders |
title_sort | neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306394/ https://www.ncbi.nlm.nih.gov/pubmed/30472088 http://dx.doi.org/10.1016/j.ebiom.2018.11.026 |
work_keys_str_mv | AT vogelandrewd neuralstemcellderivedextracellularvesiclesattributesandprospectsfortreatingneurodegenerativedisorders AT upadhyaraghavendra neuralstemcellderivedextracellularvesiclesattributesandprospectsfortreatingneurodegenerativedisorders AT shettyashokk neuralstemcellderivedextracellularvesiclesattributesandprospectsfortreatingneurodegenerativedisorders |