Cargando…
TRIF signaling is required for caspase-11-dependent immune responses and lethality in sepsis
BACKGROUND: Caspase-11, a cytosolic receptor of bacterial endotoxin (lipopolysaccharide: LPS), mediates immune responses and lethality in endotoxemia and experimental sepsis. However, the upstream pathways that regulate caspase-11 activation in endotoxemia and sepsis are not fully understood. The ai...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307235/ https://www.ncbi.nlm.nih.gov/pubmed/30587103 http://dx.doi.org/10.1186/s10020-018-0065-y |
Sumario: | BACKGROUND: Caspase-11, a cytosolic receptor of bacterial endotoxin (lipopolysaccharide: LPS), mediates immune responses and lethality in endotoxemia and experimental sepsis. However, the upstream pathways that regulate caspase-11 activation in endotoxemia and sepsis are not fully understood. The aim of this study is to test whether TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling is critical for caspase-11-dependent immune responses and lethality in endotoxemia. METHODS: Mice of indicated genotypes were subjected to endotoxemia or cecum ligation and puncture (CLP) and monitored daily by signs of a moribund state for lethality. Serum interleukin (IL)-1α, IL-1β, IL-6 and tumor necrosis factor (TNF) were measured by ELISA. Data were analyzed by using student’s t-test or one-way ANOVA followed by post-hoc Bonferroni test. Survival data were analyzed by using the log-rank test. RESULTS: Blockade of type 1 interferon signaling or genetic deletion of TRIF or guanylate-binding proteins (GBPs) prevented caspase-11-dependent immune responses, organ injury and lethality in endotoxemia and experimental sepsis. In vitro, deletion of GBPs blocked cytosolic LPS-induced caspase-11 activation in mouse macrophages. CONCLUSIONS: These findings demonstrate that TRIF signaling is required for caspase-11-dependent immune responses and lethality in endotoxemia and sepsis, and provide novel mechanistic insights into how LPS induces caspase-11 activation during bacterial infection. |
---|