Cargando…
Integrating camera imagery, crowdsourcing, and deep learning to improve high-frequency automated monitoring of snow at continental-to-global scales
Snow is important for local to global climate and surface hydrology, but spatial and temporal heterogeneity in the extent of snow cover make accurate, fine-scale mapping and monitoring of snow an enormous challenge. We took 184,453 daily near-surface images acquired by 133 automated cameras and proc...
Autores principales: | Kosmala, Margaret, Hufkens, Koen, Richardson, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307743/ https://www.ncbi.nlm.nih.gov/pubmed/30589858 http://dx.doi.org/10.1371/journal.pone.0209649 |
Ejemplares similares
-
Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
por: Richardson, Andrew D., et al.
Publicado: (2018) -
Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna
por: Swanson, Alexandra, et al.
Publicado: (2015) -
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
por: Norouzzadeh, Mohammad Sadegh, et al.
Publicado: (2018) -
SNOWED: Automatically Constructed Dataset of Satellite Imagery for Water Edge Measurements
por: Andria, Gregorio, et al.
Publicado: (2023) -
Crowdsourced Identification of Possible Allergy-Associated Factors: Automated Hypothesis Generation and Validation Using Crowdsourcing Services
por: Aramaki, Eiji, et al.
Publicado: (2017)