Cargando…
The variant at TGFBRAP1 is significantly associated with type 2 diabetes mellitus and affects diabetes‐related miRNA expression
While the transforming growth factor‐β1 (TGF‐β1) regulates the growth and proliferation of pancreatic β‐cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case‐control was conducted to evaluate the associations of the polymorphisms of TGF‐β1...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307842/ https://www.ncbi.nlm.nih.gov/pubmed/30461200 http://dx.doi.org/10.1111/jcmm.13885 |
Sumario: | While the transforming growth factor‐β1 (TGF‐β1) regulates the growth and proliferation of pancreatic β‐cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case‐control was conducted to evaluate the associations of the polymorphisms of TGF‐β1 receptor‐associated protein 1 (TGFBRAP1) and TGF‐β1 receptor 2 (TGFBR2) with type 2 diabetes mellitus (T2DM), and its genetic effects on diabetes‐related miRNA expression. miRNA microarray chip was used to screen T2DM‐related miRNA and 15 differential expressed miRNAs were further validated in 75 T2DM and 75 normal glucose tolerance (NGT). The variation of rs2241797 (T/C) at TGFBRAP1 showed significant association with T2DM in case‐control study, and the OR (95% CI) of dominant model for cumulative effects was 1.204 (1.060‐1.370), Bonferroni corrected P < 0.05. Significant differences in the fast glucose and HOMA‐β indices were observed amongst the genotypes of rs2241797. The expression of has‐miR‐30b‐5p and has‐miR‐93‐5p was linearly increased across TT, TC, and CC genotypes of rs2241797 in NGT, P (trend) values were 0.024 and 0.016, respectively. Our findings suggest that genetic polymorphisms of TGFBRAP1 may contribute to the genetic susceptibility of T2DM by mediating diabetes‐related miRNA expression. |
---|